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SECTION I
INTRODUCTION

A. NEED FOR QUANTUM DEVICES

Downscaling of transistor-based IC minimum geometries will eventually be brought to an
end by a combination of problems related to devices, interconnections, noise, and reliability.!
The resulting saturation of circuit densities almost certainly implies a saturation of the historical
exponentially downward trend in cost and volume per bit or function, which has been a primary
driving force for the increasing pervasiveness of electronics in DoD systems. Scaling has also
provided exponential improvements in device speed and power dissipation, which has led to
substantial enhancement of system performance. Because the introduction of sophisticated
electronics into these systems has significantly improved their capabilities, it is appropriate to
determine if there is an alternative scenario that significantly prolongs exponential trends in cost
and performance.

Estimates based on abstract physical device switching models that are independent of
specific device technologies indicate it would be theoretically possible to achieve several orders
of magnitude improvement in downscaling of device powers in devices with minimum geom-
etries of a few hundred angstroms if we could find an appropriate nonconventional transistor
device technology. The key to this search is to use electronic phenomena that are characterized
by dimensions much smailer than the depletion layer widths and diffusion lengths that provide
the basis for conventional transistor function.

A step can be taken in this direction by employing heterojunctions rather than p-n junc-
tions to introduce potential barriers for carrier confinement. The advent of MBE and similar
technologies permits us to fabricate semiconductor heterostructures with features on the scale of
nanometers. This allows us to explore novel physical phenomena enabled by nanoscale
heterostructures that can lead to truly revolutionary device mechanisms. Because semiconductor
structures having dimensions comparable to the Bloch wavelength of electrons can be fabricated,
the obvious place to look for such phenomena is in quantum-mechanical effects.

B. TUNNELING AS GENERIC QUANTUM EFFECT

The seminal work of Esaki and Tsu,? proposing the first artificial semiconductor
superlattice, was instrumental in motivating researchers to bandgap engineer semiconductor
systems. These authors proposed that such structures would exhibit negative differential conduc-
tivity because of the creation of artificial minibands and minigaps. The resonant tunneling diode
was realized four years later (1974) by Chang, Esaki, and Tsu.3 Initial observations were of weak
structure in current-voltage characteristics because of resonant tunneling through a single quan-
tum well encased by tunnel barriers; in essence, a single component of the superlattice. More
recent work by Sollner et al.4 revived interest in these devices when peak-to-valley current ratios
as high as 6 were observed at 25 K with high-frequency current response (exceeding 2.5 THz).

As an effect, quantum-mechanical tunneling becomes important when the thickness of
the potential barrier is on the order of the electron wavelength. This effect provides an alternative
means by which charge transport in electron devices can be controlled. In the vast majority of
semiconductor switching devices, thermionic or diffusive current transport is controlled by
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modulating the potential between device input and output. An alternative method for switching
in semiconductor devices is by control of resonant tunneling transmission resonances using
tunneling heterostructures.

Research at Texas Instruments (TI) and elsewhere on tunneling devices has been intense
over the past years with the most notable achievements being the demonstrations of quantum
dots.5 quantum-well base resonant tunneling transistors 5.7 and the demonstration of resonant
tunneling transistors operating at room temperature with both dc and microwave gain.®

C. LATERAL TUNNELING DEVICES

Lateral resonant tunneling devices were first proposed by Bate? and Sakaki.l? Interest in
lateral resonant tunneling structures stems from their unique capability for external control of the
tunnel barrier height and for their longer elastic and inelastic scattering times compared to
vertical resonant tunneling devices, since transport occurs in the plane of a high-mobility two-
dimensional electron gas.

Until recently, the ability to create structures having dimensions comparable to the Bloch
wavelength of electrons has been restricted to the vertical, epitaxial-growth direction. However,
recent advances in nanolithography have allowed researchers to define lateral dimensions com-
parable to the vertical dimensions mentioned previously. Lateral confinement greatly extends our
ability to control electron energy levels in semiconductor devices. TI has been a leader in the
development of quantum devices using lateral, as well as vertical, confinement of carriers. The
quantum-dot resonant tunneling diode, in which resonant tunneling is controlled by a discrete set
of energy levels in a laterally confined quantum well, was first fabricated and electrically charac-
terized at TLY We note that conventional RTDs, without the additional lateral confinement of
quantum-dot diodes (QDD), operate by reducing the density of states of a tunneling carrier from
three dimensions in the emitter and collector to two dimensions in the quantum well. or 3-2-3.
However, the QDD with lateral confinement achieves much sharper NDR characteristics by
reducing the density of states of a tunneling carrier to 1-0-1.

During this contract, we extended our abilitv to use lateral dimensions in the control ot
carrier transport at nanometer-length scales through development of a lateral resonant tunneling
transistor (LRTT). Figure 1 shows such a structure. In this embodiment, electron-beam lithogra-
phyv 1s used to produce gates on top of a GaAs/AlGaAs modulation-doped two-dimensional
electron gas (2DEG). While such structures have been fabricated previously in the AlGaAs/
GaAs heterojunction system,!! in this work we use the improvements obtained in the InAlAs/
InGaAs 2DEG. The energy band profile from source to drain forms a double-barrier/single
quantum-well structure with lateral quantum-well states formed between the bariiers. Applying a
monotonically increasing source/drain bias brings the lateral states through energetic alignment
with the source states with a resultant ncgative differential resistance (NDR).

Quantum point contact test structures were also developed during this contract. Quantum
point contacts!! can provide for additional density-of-states reduction in lateral tunneling carri-
ers, which could have novel device applications. Here, one expects, because of two closely
separated gates, that conduction in such “contacts™ will occur in subbands. As the contact width
is electrostatically decreased (increased), a subband channel is removed (added) with a corre-
spomndhing decrease (increase) in conductance. The key potint is that the lateral conductance is
quantized.
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Figure 1
A Lateral Resonant Tunneling Diode. (a) Vertical Physical Structure; E-Beam
Written Gates are Formed on Top of a InGaAs/InAlAs Modulation-Doped 2DEG. (b) Top View
of The Lateral Resonant Tunneling Transistor. (c) Energy Band Profile From Source to Drain (V_ = 0)
of the Lateral Resonant Tunneling Potential. The Gate Forms a Double-Barrier/Single Quantum-Well
Structure, With Lateral Quantum-Well States Formed Between the Barriers.




In Section l. we describe modeling activities undertaken during this contract and also the
relevant design criteria for the LRTT. In Section 111, we review the essential elements of the
nanotabrication, and in Section IV, we describe the progress on the LRTTSs, quantum-point
contact structures, and a parallel effort to understand the transition from superlattice miniband to
coupled-well structures. We describe the first demonstration of a lateral resonant tunneling
transistor. tonmed using depletion wnnel barriers. which exhibits NDR and negative
transconductance. The superlattice miniband devices were realized using vertical tunneling
heterostructures. but have application to both vertical and lateral devices. Our summan and
conclusions are i Section V.




SECTION 11
QUANTUM TRANSPORT THEORY AND DEVICE DESIGN

A. BOUNDARY CONDITIONS FOR OPEN QUANTUM SYSTEMS

The worldwide theoretical effort to describe the behavior of tunneling devices is frag-
mented into a number of different approaches, each of which focuses on a particular aspect of the
problem. The most popular approach invokes the formal theory of scattering to construct
wavefunctions that asymptotically approach traveling waves.13 This is a good way to evaluate
steady-state behavior of a system in which transport is purely ballistic, but it is not adapted to
address the problems of either transient behavior or dissipative transport. The means by which
these issues are addressed, relating the resonance width to the characteristic time or adding a
term to the resonance width to approximate inelastic scattering, are clearly inadequate.

An approach that addresses the significant problems of tunneling devices is a quantum
kinetic transport theory developed during the course of this contract. In this approach, the mixed
state of a quantum system is represented by the Wigner distribution function or an equivalent
density matrix. The time evolution of the Wigner function is described by a quantum kinetic
equation that incorporates the coupling of the device to its contacts and that can include realistic
collision terms. This study culminated in the publication of “Boundary Conditions for Open
Quantum Systems Far From Equilibrium,” in Reviews of Modern Physics'4 and is included as
Appendix 1.

B. TWO-DIMENSIONAL ENERGY BAND COMPUTATIONS FOR LATERAL
HETEROSTRUCTURE DEVICE DESIGN

The second theoretical task of this contract of more direct concem to the experimental
program was to provide modeling tools that relate the structural design of the device to its elec-
trical characteristics. At the inception of this work, there were modeling codes in place for the
self-consistent band-edge profile for vertical RTDs in which the current flow is parallel to the
growth direction of the epitaxial layers. For such devices, a one-dimensional calculation is
sufficient, since the device is practically uniform in the remaining two dimensions. The focus of
this program, however, was to develop lateral quantum-device technologies in which current
flow is perpendicular to the growth direction and parallel to the heterointerfaces that form the
2DEG. Hence, to accommodate the extra, lateral dimension, a two-dimensional simulation
capability was required to guide the development of LRTTs.

We. therefore, developed a general two-dimensional device simulation code, NANO2D,
that obtains the self-consistent potential energy surface defined by the conduction band minimum
for a wide class of two-dimensional III-V semiconductor heterostructure devices. Using a finite-
temperature Thomas-Fermi approximation for the carrier density, the solution to a self-consistent
two-dimenstonal nonlinear Poisson equation is obtained for specified contact voltages. This
approach is also known as a “zero-current” approximation in device literature. We have demon-
strated that the zero-current approximation works well in lateral nanostructure devices.!5-!8 The
key idea is that the tunnel barriers, in essence, separate a device into regions in which an ap-
proximately equilibrium electron distribution is established, and the Thomas-Fermi expression
for the carrier density function is the local thermodynamic equilibrium approximation. By having
a picture of the two-dimensional potential energy surface, we can accurately predict the quantum
energy levels that control current flow. By “two-dimensional” we mean that the user can specify,
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in addition to an arbitrary sequence of epitaxial layers in the vertical direction, an arbitrary lateral
variation of material composition and doping, such as might be achieved by regrowth or implant
techniques. In addition, the user can specify the lateral bias across ohmic source and drain con-

tacts, as well as voltages applied to a back ohmic contact, and to one or more independently

contacted top Schottky gates. NANO2D then generates a three-dimensional graphical image of
the conduction band minimum. Included as Appendix II is the documentation for using

NANQO2D.

We illustrate the LRTT device using NANO2D in Figure 2. A particular InGaAs/InAlAs

heterostructure, listed in Table 1 and described further in Section 1V, is chosen to illustrate the
device model. Considering Figure 2, the surface of the device is at z = 100 nm and the 2DEG at

the InAlAs/InGaAs interface is at z = 58 nm. The device is contacted as in a conventional modu-

lation-doped field-effect transistor; however, in this device the potential of the 2DEG channel is

modulated by two closely spaced and narrow gates.

8-nm plane. In this device

=5

looking along the z

'l

Two-Dimensional Energy Band Diagram for an Ing 55Gag 47As/Ing 53Gag 47As Lateral

Resonant Tunneling Transistor Under Zero Lateral Bias, Zero Substrate Bias, and 1-V

ate Electrodes. Parameters are Listed in Table 1.
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separated by 60 nm. These dimensions are of the same order as the Fermi wavelength and intro-
duce size quantization effects into the device characteristics, as will be shown in Section IV. The
lower InAlAs buffer layer is inserted to reduce parasitic parallel conduction, which can be
significant in InGaAs.

Table 1. Material and Device Structure Used in the Numerical Simulations of Wafer R5023.

Thickness (nm) Composition Doping (cm"3)
8 Ing 53Gag 47As 1x1018
30 Ing 52Alg 43As 1x10!8
5 Ing 52Al0 48As —
30 Ing 53Gag.47As —

600 Ing 52Alo.48As —
Substrate InP semi-insulating
Lateral gate length 60 nm
Gate spacing 60 nm
Fermi-level pinning 0.2eV
Gate surface potential 1.0eVv

A more conventional one-dimensional view of the epitaxial structure, from the center of
the gates extending in the z-direction from the surface toward the substrate, is shown in Figure 3.
Clearly, for this material design, surface layers are depleted and the only conduction path below
the Fermi-level is along the 2DEG. Finally, the energy band profile for the device in the plane of
the 2DEG shows the two depletion barriers induced by the surface gate contacts (Figure 4). Note
that the potential well formed between the barriers is approximately the harmonic oscillator
potential, for energies less than the barrier height.

With source and drain connections to either end of the 2DEG channel, electrons traveling
from source to drain encounter two depletion tunnel barriers analogous to the heterojunction
double barriers obtained in vertical RTDs. Unlike vertical devices, tunneling occurs from high-
mobility 2-D electrons, through 1-D confined well states, to 2-D drain states. Also, unlike the
vertical RTD, tunnel barrier heights are field-controllable, introducing an additional degree of
freedom to current-voltage spectroscopy.
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Computed Energy Band Profile in the Growth Direction for the
InAlAs/InGaAs 2DEG Device of Figure 2
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Computed Energy Band Profile Along the 2DEG at a Position 5 nm From the
InAlAs/InGaAs Near the Wave-Function Peak for the Same Device Described in Figure 2




SECTION III
NANOFABRICATION

A. LAYOUT

We fabricated all three devices, with the same general process, on a single die that was
1.4 mm by 1.1 mm. A mask set, shown in Figure 5, was designed that contained the following
five levels: alignment marks, mesa, ohmic metal, gate metal, and pads. The alignment level was
defined in metal and contained both optical and e-beam alignment marks. The devices were
designed so that the alignment accuracy required for the optical lithography steps was very easily
met while we took advantage of the high resolution and excellent overlay accuracy of our Philips
e-beam lithography tool.

The mesa level is an e-beam exposed level. Although the required resolution of 0.7 pum is
not out of the question for optical lithography, the alignment accuracy called for is. The ohmic
metal level is exposed with optical lithography.

The gate level is formed with a combination of e-beam and optical lithography. The
minimum feature for the QPC and spectrometer devices is 0.1 um, while the lateral tunneling
device requires sub-0.1-pm lines. The optical portion of the gate metal mask shorts all of the
bondpads to separate gate electrodes together. This is to avoid damage caused by even small
electrostatic charges that the device might be subjected to. Once the device was packaged and
bonded, the metal lines shorting the pads together are scribed and shorts are removed. There is
also an optional optical mask pattern for vias through a dielectric passivating layer and/or adding
additional metal to the bondpad area.

Figure §
Scanning Electron Micrograph of Completed Devices
Produced by the Mask Set Developed for This Program




B. PROCESS

Postepitaxial fabrication begins with definition of the alignment mark pattern by optical
hthography. where pattern transfer by vacuum evaporation and lift-off yields a metal pattem.
Metallization was typically Cr or Ti, followed by approximately 200 nm of Au.

Fither the mesa or ohmic levels could be formed next. There are advantages to either
approach. Patterning the ohmic metal first allows the use of an electrical measurement to deter-
mine the effectiveness of the mesa etch in isolating the 2DEG. This ability is desirable when one
wishes to use the minimum depth etch for isolation so that step coverage problems are reduced.

tat etch masks sometimes lead to anomalously high etch rates adjacent to the metal.
This caivresult i undercutting the mesa area, disconnecting it from its ohmic contacts. Although

ooy sver mae
TAvsdy s vy ey

both processes were tried, we more typically patterned and etched the mesa areas before ohmic
metalhization.

The mesa pattern called for a negative e-beam resist. We experimented with both Shipley
SAL- 601 and CMS-EXR. For our particular processing needs, we found the CMS-EXR to be
superior. Using a dose of 70-uC/em? with a 50-keV beam produced excellent pattern fidelity on
both GaAs and InP substrates. After a postdevelopment bake, samples (both GaAs and InGaAs)
were etched with sulturic acid, hydrogen peroxide, and water mixtures in the ratio 1:8:160. In
our epitaxial structures, the 2DEG was relatively close to the surface so that we could etch to a
depth that ensured 1solation without experiencing step coverage problems.

Negative e-boam resist is difficult to remove by any other method than O3 plasmas. We
did Bive some concern that the relatively long plasma etching times required to remove this
resictmight bave adeletertous etfect on 2DEG mobility. To determine this, van der Pauw/Hall-
cticet campics were subjected to 07 plasma etch conditions for 30 minutes. We detected no
steniticant depradation in mobility of these samples after plasma ashing. For GaAs samples,
ohme metallimation consisted of AuGe/Ni/Au metallurgy. followed by a furmace anneal at 430°C
for Yminutes. InGaAs samples received Cr/Au or Ti/Pt/Au ohmic metallizations and were
atloved silarly . In both cases, a simple optical lithography step, followed by lift-off, accom-
pleded the pattern transter,

To reproduce the designed gate pattern faithfully, a fairly wide parameter space of expo-
sure conditions had to be explored on our e-beam. The QPC and spectrometer gate patterns were
poodicod wathoa SO nm-diameter beam, 25-nm pixels, and a dose of 450 pC/cm?.
Polymethvimethacrylate (PMMA) with a molecular weight of 950,000 was used as a resist. After
exposure, samples were spray developed with MIBK/Ipa 1:1 for 2 minutes. Vacuum evaporation
s T et procedures were used to form the metal gate pa..emn. Figures 6(a) and (b) and 7(a)
and (h)y show the mesa and gate pattern design and SEMs of fabricated QPC and spectrometer
der pees respectively.

To form clectrostatic tunnel barriers for the lateral resonant tunneling transistor, we
cmploved a IS-nm-diameter beam with 5-nm pixel spacing. Because of intraproximity eftects,
the required dose is much higher: 2600 pC/em?. Figure 8 is an SEM of the dual-gate structure
produced Tach gate s approximately 60-nm long with a 60-nm space between them.

A passivating layer of silicon nitride was plasma deposited on the GaAs samples and vias
were etched through to the bondpads. On InGaAs samples. we noticed a reduction in sample

conductioty. We suspect that the nitride layer may affect the surface potential of InGaAs. In
subsequent samples, we did not deposit silicon nitride on InGaAs devices.

10
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SECTION 1V
CHARACTERIZATION & ANALYSIS

A. LATERAL RESONANT TUNNELING TRANSISTOR

A lateral resonant tunneling field-effect transistor, similar to that described in Section II,
has been previously demonstrated in the AlGaAs/GaAs system by Ismail et al.!! Ismail showed
clear conductance oscillations associated with resonant tunneling of electrons across the deple-
tion barriers at 4.2 K; however, no NDR was observed. In this section, we describe the first
observation of NDR in a lateral resonant tunneling transistor. The NDR in this InAlAs/InGaAs
lateral RTD persists to 30 K. Furthermore, we show clear evidence for mode mixing of 2-D and
1-D confined states.

The material structure for this device was described in Section II. Van der Pauw resistiv-
ity and Hall-effect measurements for the heterostructure, R5023, yield a room-temperature sheet
carrier density of 1.12 x 1012 cm—2 with a mobility of 9500 cm2/Vs. At 77 K, sheet carrier
density is 9.6 x 1011 cm=2 with a mobi'ity of 49800 cm?2/Vs. The device structure consists of an
0.7-pum-wide mesa with source-to-drain spacing of 20 pym. Dual 60-nm gates, spaced 60-nm apart
overlie the mesa, as shown in Figure 9. For the device described, gates are not connected exter-
nally. Modulation of the 2DEG is obtained by bias applied to the substrate backside, Vj.

These devices exhibit persistent photoconductivity (PPC) when illuminated briefly by a
red light-emitting diode. The PPC is characterized by two time constants at 4.2 K: an initial short
decay constant of about 2 minutes, and a longer decay time exceeding several hours. Measure-
ments described here were made after the short-lived photoconductive decay. No significant
conduction is obtained without prior illumination. Presumably, the PPC effect is similar to that
observed in other InP/InGaAs and InAlAs/InGaAs 2DEG heterostructures.!920 This PPC occurs
because of separation of photogenerated electron-hole pairs or donor photo-ionization and charge
separation at the 2DEG heterojunction.

Detailed I-V characteristics of this lateral resonant tunneling device are shown in Figure
10 as a function of substrate bias. As substrate bias is increased. the Fermi-level is raised with
respect to the depletion barriers. Because the barrier shape is quasi-Gausstan, the highest trans-
mission probability occurs at the Fermi-energy, where effective barrier thicknesses are thinnest.
Wc observe resonant tunneling as a function of drain-source bias with as many as seven peaks
discemable (e.g., Vs = 2.5 V, reproduced alone in Figure 11).

Note that the peak separations are nearly equal, as would be expected from a symmetric
harmonic oscillator potential. Using the one-dimensional computed potential profile as in Figure
4, an estimate for expected peak-voltage separations can be obtained from symmetric harmonic
oscillator eigenvalues. For this potential, /- is approximately 14 meV, in good agreement with
the value of 17 meV observed in these measurements.

Also n Figure 10, the first two resonant tunneling peaks are observed to successively
disappear as substrate bias is increased. The effect of the substrate bias is to raise the Fenmi-
energy with respect to the potential barriers. When the quantum-well states are moved below the
quasi-Fermi level, transmission through these states is apparently significantly suppressed be-
cause of their occupancy and coulomb repulsion. The general shift in peak positions with bias is
likely caused by the increase in channel conductance with substrate bias.
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Another notable feature in Figure 10 is a slow charging effect in the device with a time
constant less than one minute. In the measurement of Figure 10, the drain source voltage is
stepped from 0 to 0.2 V at one substrate bias, followed by a second sweep of Vg, and so on, (0
complete a set of five substrate biases (limitation on data set size is given by the HP semiconduc-
tor parameter analyzer used to make these measurements). It is apparent in Figure 10 that, for
substrate biases exceeding 2.7 V, the first measurement in these data sets (indicated by the
dashed lines) is shifted with respect to the rest of the measurements in the set. This is indicative
of a charging effect associated with the applied biases. Since the effect is not observed until
substrate bias exceeds 2.7 V, it is likely to be associated with trapping in the InAlAs buffer layer
or buffer-layer interfaces. We note that the substrate current is small, even at high applied bias,
i.e., less than 200 pA at Vg=5V.

Temperature dependence of resonant tunneling is shown in Figure 12. As can be seen,
NDR persists to temperatures as high as 30 K. Evaluation of the I-V characteristic between 1.2
and 4.2 K. and the reason for loss of higher voltage peaks, is not presently understood.

In addition to these measurements at fixed substrate bias, one can also use substrate bias
to modulate the channel at fixed drain/source bias. This is fundamentally different from previ-
ously described measurements, since in the former case (with fixed substrate bias) electrons are
injected from the same subband in the source as the drain/source bias. Under this condition, the
spectroscopy is then indicative of the quantum-well eigenvalues that, in our experimental data,
have approximately equal separation (no strong effect of well-to-drain selection is indicated).
However, under fixed Vg, the 2-D subband occupation in the drain and source are controllable
by the substrate bias. Thus, the 2-D source/drain size quantization is revealed in a rich spectrum
of resonances between source and drain (see Figure 13). Further characterization and analysis of
these results are in progress and will be reported elsewhere.?!

B. FINITE SUPERLATTICES

Recognizing that issues of electron coherence in superlattices are important in under-
standing lateral resonant tunneling-device functions, as a secondary task of this contract we made
a study of electron transport in vertical, epitaxial superlattices, which could then be applied to
lateral structures. This work was published?? and is included as Appendix III.

C. QUANTUM POINT CONTACTS

Measurements on fabricated quantum point contact structures have not, to date, yielded
fully functional devices. The initial three sets of devices received at Yale had problems related to
gate leakage, submicrometer ohmic contact formation, and surface passivation (InGaAs devices
only). Major processing impediments appear now to be solved, as evidenced by the demonstra-
tion of lateral resonant tunneling as described elsewhere in this report. A fourth set of 24 devices
was received at Yale as this report was being completed, and is in the process of being measured
at this writing.
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SECTION V
SUMMARY AND CONCLUSIONS

Accomplishments under this contract cover a wide range of activities in an important area
of electron device research. We have developed and brought to publication a foundation work !4
{see Appendix I) on the physics of open quantum systems driven far from equilibrium. A parallel
modeling effort has enabled the computation of two-dimensional self-consistent energy band
diagrams. This code, NANO2D, described in Appendix II, has enabled the successful design and
demonstration of the first lateral resonant tunneling transistors to exhibit both negative differen-
tial conductance and negative transconductance. Negative resistance is demonstrated to persist to
30 K. Previous work in this field has shown conductance modulation at 4.2 K, but no NDR.

We have also observed, by tunneling spectroscopy of finite superlattices, eigenstates of a
superlattice system driven below the Stark localization threshold?2 (see Appendix III).

Significant improvements obtained here call for continued work in this field to examine
the feasibility of room-temperature operation of the lateral resonant tunneling device. It is antici-
pated that such operation is feasible if depletion barriers are replaced by heterojunctions using.
for example, an etch and epitaxial regrowth process.

Directions for further development of the modeling area include the ability to compute
relevant quantized energy levels to make quantitative predictions for the I(V) characteristics.
Since lateral devices lack any simplifying symmetry (such as occurs in cylindrical quantum dots,
for example), a multi-dimensional Schrodinger solver would be required in which both the
bound-state energy levels of the 2DEG subbands and the resonant tunneling levels are computed
in the same calculation. This would permit further understanding of the possible mode mixing
effects that occur in the tunneling transitions from a two- to a one- to a two-dimensional electron
gas.
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APPENDIX 1
BOUNDARY CONDITIONS FOR OPEN QUANTUM SYSTEMS
DRIVEN FAR FROM EQUILIBRIUM




Boundary conditions for open quantum systems driven far from equilibrium

William R. Frensley”
Central Research Laboratories, Texas Instruments Incorporated, Dallas, Texas 75265

This is a study of simple kinetic models of open systems, in the sense of systems that can exchange con-
served particles with their environment. The system is assumed to be one dimensional and situated be-
tween two particle reservoirs. Such a system is readily driven far from equilibrium if the chemical poten-
tials of the reservoirs differ appreciably. The openness of the system modifies the spatial boundary condi-
tions on the single-particle Liouville—von Neumann equation, leading to a non-Hermitian Liouville opera-
tor. If the open-system boundary conditions are time reversible, exponentially growing tunphysical) solu-
wons are introduced into the time dependence of the density matrix. This problem is avoided by applying
time-irreversible boundary conditions to the Wigner distribution function. These boundary conditions
model the external environment as ideal particle reservoirs with properties analogous to those of 1 black-
body. This time-irreversible model may be numerically evaluated in a discrete approximation and has
been applied to the study of a resonant-tunneling semiconductor diode. The physical and mathematical
properties of the irreversible kinetic model, in both its discrete and its continuum formulations, are exam-
ined in detail. The model demonstrates the distinction in kinetic theory between commutator super-
operators, which may become non-Hermitian to describe irreversible behavior, and anticommutator su-
peroperators, which remain Hermitian and are used to evaluate physical observables.

*Present address: Erik Jonsson School of Engineering and
Computer Science, University of Texas at Dallas, Richardson,
Texas 75081,

Reviews of Modern Physics, Vol 62, No 3, July 1930

CONTENTS . .
{ Appendix C: Boundary Conditions for Lagrangian-Variable
| [. Introduction 745 Approaches Tad
A. Significance of open systems 746 Appendix D: Boundary Conditions for Schrodinger’s Equa-
B. Theoretical approaches to open quantum systems 747 tion T
II. Quantum Kinetic Theory 750 Appendix E: Position-Dependent Effective Mass T
A. Levels of approximation in statistical theory 750 Appendix F: The Boltzmann Collision Superoperator for Phe
B. Fundamentals of kinetic models 750 Scatter'ng in Semiconductors N6
C. Linear algebra of supcroperators 751 Anncndin G Developmient of the Discrete Wigner Distribu-
D. Irreversibility S tion Funcuon for Signal Analysis TN
HI. Time-Reversible Open-System Model 752 References TN
A. Continuum formulation 753
B. Discrete numerical model 754
IV. Irreversible Open-System Model JE
A. Continuum formulation 757
B. Discrete model 758
V. Application of the Irreversibic Model to Tunneling . INTRODUCTION
Diodes 761
A. Steady-state (dc) behavior 762 The more active, and thus the more interesting, prod-
B. Large-signal transient response 764 ucts of technologyv are systems that operate tar from
C. Small-signal ac response 765 thermal equilibrium. An examination of a few examples
V1. Properties of the Irreversible Model 767 of such systems shows that they are generally open. in
A Mathematical properties _ 767 the sense that they exchange matter with their environ-
B. Superoperator symmetry and physical observables 771 .
C. Relation to many-body theory 774 ment. The present work examines some schemes by
VIL. Design and Analysis of Discrete Numerical Models 778 which open quantum systems (which are beginning to be-
A. Continuity equation 776 come technologically important in the conteat of mi-
. B. Momentum balance 776 croelectronics) may be effectively described at a kinctic
C. Detailed balance 778 level.
D. Comparison of discrete models 779 In the context of the present work, an “open system’™
VI Conclusions 781 is one that can exchange locally conserved particles with
Ackn. aledgments 781 . . . N
Appendix A: Self-Consistent Potential of a Tunncling Struc- its environment. Moreover, we wish to focus upon the
ture 782 far-from-equilibrium behavior of such a system, and thus
Appendix B: Violauon of Continuity in the Pauli Master the definition of open system will be further restricted to
Equation 783 mean one that is coupled to at least two separate particle

reservoirs, so that a nonequilibrium state may he created
and maintained. To specify such a system we must re-
gard it as occupying a finite region of space, and thus the
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physics of such a situation has been the subject of a close
examination. {The traditional use of the grand canonical
ensemble to define the equilibrium state (Tolman, 1938,
Sec. 140) contemplates a system coupled to a single parti-
cle reservoir.] There is a large body of work on quantum
systems that are coupled to a reservoir so as to permit an
exchange of energy (see, for example, Chester, 1963;
Louisell, 1973; Haken, 1975; Davies, 1976; Oppenheim,
Shuler, and Weiss, 1977; and references therein), or are in
purely thermal contact with two or more reservoirs (Le-
bowitz, 1959). Most of these analyses are directed more
to the problem of damping (as seen in ohmic conduction)
than to openness in the present sense. Much of the work
in this area has been motivated by the development of
optical technology (Louisell, 1973; Haken, 1975), in
which the present distinction between openness and
damping is unnecessary because the particles of interest
are massless bosons. In a laser, for example, the degrees
of freedom of greatest interest are the normal modes of
the radiation field. A single theoretical model, the
damped harmonic oscillator, is used to describe both the
loss of energy {photons) to the gain medium within the
cavity and the loss of photons to the output beam (Gor-
don, 1967; Scully and Lamb, 1967). The analogous pro-
cesses in an electronic resistor (an open system in the
present sense) are the scattering of an electron by a pho-
non within the resistive material and the escape of an
electron from the resistive material into a more highly
conductive contact. The present work will concentrate
upon the consequences of the latter process. The
difference between the system of massive fermions and
the system of massless bosons is that the fermion system
is constrained by a local continuity equation, whereas the
boson system (within the usual models) is not so con-
strained.

A. Significance of open systems

To document the importance of open systems, let us
consider some examples. Most practical engines (in the
sense of machines that convert some form of energy into
mechanical work) exchange matter with two or more
reservoirs. To cite examples from an earlier technology
(avoiding the complications of internal phase transitions
or chemical reactions) we might consider the overshot
water wheel (Reynolds, 1983), which operates between
reservoirs of water at different gravitational potential, or
the high-pressure steam engine (Dickinson, 1938), which
operates between its boiler and the atmosphere, reser-
voirs which differ greatly in their pressure and tempera-
ture. Conspicuously absent from a list of economically
significant engines are systems that operate upon the Car-
not model of a closed system in purely thermal contact
with its reservoirs.

A technology of more current interest is electronics,
whose systems are usually arranged so that a “power sup-
ply” maintains constant voltages (i.e., chemical potentials
for electrons) on two or more “buses” (see, for example,
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Horowitz and Hill, 1980). The *‘circuits” (such as logical
gates or analog amplifiers) that perform the intended
functions of the system are connected to, and conduct
current between, the buses. Each bus is an electron
reservoir, and the performance of the system’s power
supply is judged by how nearly these reservoirs approach
the ideal behavior of no change in chemical potential
(voltage) as particles are exchanged (current is drawn).

The exampie of electronics points out that the distinc-
tion between a closed and an open system depends upon
how one chooses to partition the universe into the system
of interest and “‘everything else.” (Such a partitioning is
implicit in the analysis of every physical problem.) To
demonstrate this point, let us examine the etymology of
the term circuit. As used in the preceding paragraph, cir-
cuit means “an assemblage of electronic elements”
(Woolf, 1981), which is most often open with respect to
electron flow. This usage of the term is now much more
common among electrical engineers than the original
meaning, *‘the complete path of an electric current in-
cluding usually the source of electric energy” (Woolf,
1981), which implies a closed system with respect to elec-
tron flow. It is no accident that the usage of the word
circuit has evolved in this manner. Early in the develop-
ment of electrical technology, a useful system [such as
the electromagnetic telegraph (Marland, 1964)] was com-
posed of at most a few topologically closed *“‘circuits,”
and the closure of the current path was a central con-
cern. As the complexity of electrical systems increased,
the convention of organizing a system in terms of a
power supply and its buses was developed. This provided
a common segment for all the current paths, and the at-
tention of the engineer focused on the remaining, “‘in-
teresting”” segment, that which contained the active de-
vices (and the term circuit came to be applied to such a
segment). However, by focusing on only a segment of the
current path, one had to deal with an open system, rather
than a closed one.

The physics of closed systems is certainly simpler than
that of open systems, because closed systems obey global
conservation laws, while open systems, in general, do not.
In the well-established techniques of physical theory one
often encounters artifices, usually in the form of periodic
boundary conditions, which assure the closure of the
theoretical model, if not of the system itself. The point of
the present discussion is that it is frequently necessary to
partition a complex system (which might reasonably be
regarded as closed) into smaller components which,
viewed individually, must be regarded as open. Thus, the
more applied disciplines of the physical sciences must
often deal at some level with the concept of an open sys-
tem.

There are many established techniques for dealing with
open systems in fields such as fluid dynamics, neutron
transport, and electronics. All these fields are concerned
with the transport of (usually) conserved particles. The
transport phenomena are described by transport equa-
tions at a kinetic or hydrodynamic level which are either
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differential or integro-differential equations. Such equa-
tions require boundary conditions, and it is in these
boundary conditions that the openness of a system is de-
scribed. In the computation of the flow around an airfoil,
one must supply “upstream” and “‘downstream’ bound-
ary conditions (Roache, 1976, Chap. III, Sec. C). In elec-
tronics the connection to the external circuit is accom-
plished by some sort of contact. In solid-state electronics
the most frequently used type of contact is the ohmic
contact, an interface between a metallic conductor and
(usually) a semiconductor which permits electrons to pass
freely. Because the ohmic contact is a critical component
of solid-state technology, most work on such interfaces
has been directed toward their fabrication and character-
ization (Milnes and Feucht, 1972). The theoretical repre-
sentation of such contacts by boundary conditions has
been a part of the analysis of semiconductor device prob-
lems since the beginning of semiconductor technology
(Bardeen, 1949; Shockley, 1949). The current practice of
using boundary conditions to model contacts is discussed
in detail by Selberherr (1984, Sec. 5.1).

B. Theoretical approaches to open quantum systems

Since the existing theoretical work on open systems
consists primarily of the definition of boundary condi-
tions on transport equations, it is appropriate to examine
various approaches to transport theory to see how they
have dealt with this issue. This examination will center
upon electron-transport theory, because we wish to in-
clude quantum-coherence effects in the theory, and these
are much more prominent in systems of electrons than in
systems of more massive particles.

By far the most common approach to defining the
boundary conditions on a transport problem is to circum-
vent the issue entirely. This is most easily done by re-
stricting one's attention to the special case of spatially
uniform systems, so that (at the kinetic level) all spatial
derivatives disappear, and with them the need to specify
the boundary conditions. Applications of the Boltzmann
equation (as expressed in terms of the usual Euler vari-
ables) have most often been restricted to the case of uni-
form driving fields (Dresden, 1961; Conwell, 1967).
When the Boltzmann equation has been applied to
nonuniform systems (see, for example, Castagne, 1985;
Constant, 1985; Reggiani, 1985; Baranger and Wilkins,
1987), techniques requiring that the equation be recast in
terms of the Lagrange variables have generally been em-
ployed. Boundary conditions for such formulations are
discussed in Appendix C. Much of the work on quantum
transport has also assumed uniform fields (see, for exam-
ple, Levinson, 1969; Mahan, 1987).

The other popular approach is to assume periodic
boundary conditions (Kohn and Luttinger, 1967), which
assure the Hermiticity of all relevant operators (Yennie,
1987). This in effect closes the system, forestalling the
possibility of studying any open-system aspects of the
problem. It also prevents one from studying any situa-
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tion in which the change in chemical potential across the
system is of finite magnitude (because the potential must
also be periodic). Periodic boundary conditions are thus
adapted to the requirements of linear-response theory
(Kubo, 1957), but not to those of far-from-equilibrium
problems.

A fundamental approach that does take cognizance of
the open nature of transporting systems is that advocated
by Landauer (1957, 1970; also Biittiker er al., 1985).
This approach envisions a system within which dissipa-
tive processes do not occur, but which is coupled to two
or more ideal particle reservoirs. The conductance of
such a structure is then expressed in terms of the
quantum-mechanical transmission coefficients of the sys-
tem. The ideal reservoirs have properties analogous to
those of a blackbody: They absorb without reflection any
electrons leaving the system and emit an equilibrium
thermal distribution into the system. We shall see that
such a picture is indeed the key to constructing a useful
open-system model. However, let us note that this ap-
proach does not specify the boundary conditions on a
boundary-value problem. The boundary conditions are
actually applied to Schrodinger’s equation and are the
asymptotic conditions upon which the formal theory of
scattering is based (see Appendix D). The concept of
thermal reservoirs is invoked to specify how the various
wave functions are to be incorporated into a density
operator for the system, from which observables may be
evaluated.

The Landauer approach has successfully described a
number of quantum conductance phenomena (Stone and
Szafer, 1988): Aharonov-Bohm oscillations, universal
conductance fluctuations, and quantized c.nductance
through constrictions {(Szafer and Stone, 1989). (Many
recent results in this area can be found in Heinrich.
Bauer, and Kuchar, 1988, and in Reed and Kirk, 1989
However, it is important to recognize that these phenom-
ena occur only under a very restricted range of cir-
cumstances (Webb, 1989): cryogenic temperatures (typi-
cally 1 K) and low voltages (typically 1 meV). The
reason for this is not so much the fragility of quantum-
interference effects in themselves, but rather the con-
straints placed upon the phenomena by the requirement
that they be observable in the linear-response regime
(which is to say, very near to thermal equilibrium). Near
equilibrium, only the states near the Fermy level contrib-
ute to the conductance, but all such states participate.
As the temperature or bias voltage is raised. more states
participate in the conduction, with slightly different ener-
gies or wave vectors, and the observable eftects are
“washed out.”

In a far-from-equilibrium situation one has the oppor-
tunity to populate selectively a narrow set of quantum
states, leaving nearby states unpopulated. This can lead
to quantum-interference phenomena which are quantita-
tively dominant at or above room temperature. The pro-
totypical example of such a situation is provided by the
quantum-well resonant-tunneling diode (Chang. Esaki.
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and Tsu, 1974; Sollner et al., 1983), which is discussed
more extensively in Sec. V. Such devices have demon-
strated pcak-to-valley current ratios as high as 30 at 300
K (Broekaert, Lee, and Fonstad, 1988; for a tabulation of
device results see Mehdi and Haddad, 1989).

Given that far-from-equilibrium quantum-interference
effects can be large and are thus important to study, one
must ask whether such effects can be adequately de-
scribed by elementary quantum theory. For the case of
tunneling structures the standard elementary theory as-
sumes that the electron states are stationary scattering-
state solutions of Schrodinger’s equation (Duke, 1969;
Tsu and Esaki, 1973; Wolf, 1985). Does this provide an
adequate description of nonequilibrium phenomena? The
answer is, in general, no, and we shall explore this issue
below. The elementary tunneling theory does seem to
give good results for the current density, but for other
physical observables, such as the charge distribution, a
more sophisticated approach is required.

To demonstrate the problems one encounters with ele-
mentary quantum-mechanical models in a far-from-
equilibrium situation, let us consider the apparently sim-
ple problem of finding the self-consistent electrostatic po-
tential in a single-barrier tunneling structure. A semi-
conductor heterostructure is assumed, and the details of
the structure and analysis are given in Appendix A. The
approach that we shall use is first to approximate the
self-consistent potential using the Thomas-Fermi screen-
ing theory. The resulting potential and electron distribu-
tion are shown in Fig. 1. The Thomas-Fermi potential
shows the smooth bending that one would expect in a
system in which the charge densities are several orders of
magnitude less than those in metallic systems. Now we
use the Thomas-Fermi potential in Schrddinger’s equa-
tion and start an iterative procedure to find the “true™
self-consistent potential. The results of the first iteration
are also shown in Fig. 1, and it is quite clear that we will
not obtain a physically credible result. The charge densi-
ty obtained from Schrodinger's equation differs markedly
from the Thomas-Fermi solution on the left-hand
(upstream) side of the barrier. Where Thomas-Fermi in-
dicates an accumulation of electrons, Schrédinger’s equa-
tion gives a depletion of electrons. The reason for this is
that the tunneling theory assumes that the electron states
in the potential “notch” on the left-hand side of the bar-
rier are in equilibrium with the right-hand reservoir, be-
cause inat is the side from which these wave functions
are incident. The depletion of electron density may be
traced to the requirement of current continuity in the
propagating states: As an electron propagates into a re-
gion of decreasing potential, its velocity increases; but to
maintain a constant current density, its amplitude must
then decrease. Because the tunneling-theory charge den-
sity does not produce overall charge neutrality in the
structure, the solution of Poisson’s equation has large
electric fields at the boundaries, which in turn exacer-
bates the problem of charge neutrality. (The final self-
consistent result would show the energy barrier lying
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near the bottom of a parabolic potential well consider-
ably deeper than that of the first iteration.)

The physical processes that work to enforce charge
neutrality are those which work to restore thermal equi-
librium, which is to say, inelastic processes. In the
present case, these are the inelastic scattering events (pri-
marily phonon scattering) which dissipate the electrons’
energy and cause electrons in the propagating states
entering from the left-hand reservoir to fall into the
lower-energy notch states. The resulting population in
the notch states produces the accumulation of negative
charge required to screen the electric field. Thus the true
self-consistent potential will depend upon the number of
electrons in the notch states, which in turn will depend
upon the relative rates at which electrons are scattered
into the notch states and subsequently tunnel out
(Wingreen and Wilkins, 1987). Therefore a physically

O 7T T T T T T
o
L ]
00—~~~ —-— -
~~~ b 4
> [ ]
2 L =
> [ ]
8 1
o 0.2 N T TN
o F . [ I
[£3] E N e A
) 'y Lo
: N <
. R - L7 1
_0'4: N . 3
- T _.-7 4
PR IV WP TR R U GRS SR G
AN SN (LA SRR L A B SN B
—_ y —T-F screening 7
e 10 2 -
g L - = Zf(E)(2)] ]
3] [ :
~ lonized donors 1
= ]
—
S’
o
hed
]
[
)
o)

z (nm)

FIG. 1. Potential tupper) and charge density (lower) of a semi-
conductor tunneling heterostructure biased far from equilibri-
um: solid lines, results ot a Thomas-Fermi screening model;
dashed lines, charge density and first iteration of the potential
obtained by solving Schrodinger’s equation in a conventional
tunneling calculation. The tunneling result fails to display an
accumulation of electrons on the upstream side of the barrier
because inelastic processes are not included, and as a result the
self-consistent potential is quite unphysical. The dotted line
shows the distribution of positive charges, and the dot-dashed
line shows the chemical potentials.
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reasonable self-consistent potential will not be obtained
unless the inelastic processes are included in the analysis.

The usual way to incorporate inelastic processes, to the
first order, is to use the Fermi golden rule to evaluate the
transition rates between states. In a more complete
description these transition rates actually appear as terms
in a Pauli master equation (see Kreuzer, 1981, Chap. 10).
The Pauli master equation assumes that the electrons oc-
cupy only eigenstates of the Hamiltonian, not superposi-
tions of those eigenstates. In other words, the density
operator of the system is and remains diagonal in the
eigenbasis of the Hamiltonian. In the present case, this
assumption violates continuity. An example of this is
shown in Fig. 2, which shows two eigenstates of
Schrodinger’s equation, one incoming from the left and
one confined in the notch (though it is coupled by tunnel-
ing to a propagating state on the right-hand side of the
barrier). An inelastic process described by the Pauli mas-
ter equation will cause probability density to disappear
from one state and reappear in the other. Because the
spatial distributions of the two states are different, this
means that the probability distribution must change with
time. But because the states are both eigenstates, their
current densities are uniform. Thus the Pauli master
equation violates the continuity equation. This is ex-
plored more formally in Appendix B. Presumably, in-
elastic transitions are more localized processes, involving
superpositions of eigenstates which describe such locali-
zation. However, this implies that the off-diagonal ele-
ments of the density operator are non-negligible, and
theories that comprehend off-diagonal density operators
are kinetic theories.
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FIG. 2. Typical eigenstates in a tunneling structure: solid line,
a propagating state: dashed line, a state that is confined in the
potential “notch.” The spatial distributions of these states are
quite diffcrent, as shown in the lower plot of |¥tx)i". Thus the
Pauli master-equation description of an inelastic process that
couples these states must violate the continuity equation.
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To demonstrate that a plausible solution to the self-
consistent-potential problem can be obtained using kinet-
ic theory, the results of such a calculation are shown in
Fig. 3. The approach described in Secs. IV and V was
used, and inelastic processes (phonon scattering) were in-
cluded using the Boltzmann collision operator described

are included [Fig. 3(a)], an accumulation layer is formed
in the potential notch. However, the accumulation is not
sufficient to screen the electric field effectively as it ap-
proaches the boundary. Evidently there are other effects
that need to be included. One such effect is the resistivity
of the contacting layers (outside of the calculation
domain). If these layers are ohmic conductors, the distri-
bution of electrons in them must shift away from its equi-
librium value when a current is conducted. When this
effect is incorporated into the boundary conditions on the
kinetic model, the self-consistent potential shown in Fig.
3(b) is obtained. This is a much more credible result, as
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FIG. 3. Calculations of the self-consistent potential of the tun-
neling heterostructure using a kinetic theory that includes in-
elastic processes. In {(a) the longitudinal-optic and acoustic-
phonon scattering processes are included, but the incoming dis-
tribution of electrons is fixed. An accumulation layer is formed
on the upstream side of the barrier, but the screening of the
electric field is far from complete. In (b) the incoming distribu-
tion of electrons i1s allowed to shift in response to the clectric
field at the boundary, to simulate an Ohmic conductor outside
the boundary. The screening is more complete, and the result-
ing potential is more physically credible.
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the potential varies smoothly through the structure and
the clectric field approaches a small value at the boun-
dartes. The screening length trom the kinetic model s
significantly longer than the value indicated by the
Thomas-Fermt calculation of Fig. 1. This might have
been expected from the effects of size quantization in the
notch tAndo, Fowler. and Stern, 1982) and also from the
tinite rate of nelastic transitions that till the notch.

Thus the problem of calculating the self-consistent po-
tential in 4 tunneling structure is about as complicated as
it could possibly be, in the sense that the qualitative re-
sult depends upon all the processes occurring within the
system. It thus provides a vivid example of the problems
one  encounters in attempting to  apply elementary
quantum-mechameal concepts to a far-from-equilibrium
situation. A satisfactory  treatment of tar-from-
equilibrium phenomena requires an approach at a level of
sophistication at least equal to that of kinetic theory.

Il. QUANTUM KINETIC THEORY

A. Levels of approximation in statistical theory

A generally accepted approach to the problems ot sta-
tistical physies 1s 1o begin wath the general theory of
many-body  dynamics and to proceed by deducuve
reasoning to a formulavon that provides an answer for
the problem of interest tsee. for example, Reichl. 1930,
The steps 1o this deductive chamn necessanly involve the
mtroduction of extra assumptions in the form of suttable
approximations. One may loosely categorize the levels of
approximation n terms of the independent vanables re-
guired to specity the state ot a svstem. The most detailed
level 1y the tfundamental many-body theory. which
principle requires a complete set of dvnamical varables
tor cach parncle. This can be reduced to the kinetic level
by restricting one’s attention to one- or two-body proper-
tes (by truncating the BBGKY hierarchy of equations,
tor example (Rewchl, 19800 Sec. 7C]. It may also be
necessary to remove trom explicit consideration other
dvnamical varables of the complete system, such as pho-
ton or phonon coordinates. when electrons are the parti-
The kinetic theory 1s expressed in terms
of disinbution functions defined on a single-particle
phase space. requiring one position and one momentum
variable tor each spaual dimension. In the quantum
case. this goes over to two arguments of the density
operator + The hvdrodynam:ce level of approximanon s
obraimed by making some assumption about the form of
the distribution function with respect to momentum. and
integrating over all momenta. Thus the hydrodvnamic
theory s expressed in terms of densities rhat are tfunc-
tions of position only.

The approach taken in the present work is quite
different tfrom the conventional deductive approach. The
abjective 15 1o adenuty the mathematical properties re-
quired of simple Kinetie modeis of open systems. The

cles of mterest.

v tAGA Chve o 32 Ne 3 Ly a6
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procedure will be to construct small, spatially discretized
models and to explore their properties numerically. The
significance of the results must then be argued inductive-
ly.

B. Fundamentals of kinetic models

In the kinetic level of description of a complex system.
the effects of those degrees of freedom that are of less in-
terest in a given problem are included implicitly 1 ob-
jects such as collision operators or effective interaction
potentials. In the example of electronic devices such de-
grees of freedom should include ¢lectron coordinates out-
side the device, but within the external circuit. They also
include all excitations of the device matenal apart from
the single-electron states le.g.. the phonons!. Thus. at
this level, the state of the system is described by a one-
body density operator or distribution function. In gen-
eral, this can be written as

prex’ =¥ (x Dix) . 2.1
{

where i labels a complete set of states and the w are
real-valued probabilities for the system to be in state [,
Because we shall be considering open systems in which
the number of particles is not fixed. the usual convention
for the normalization of pi{i ) =1 and Trp =1 15 not
useful. Instead. we shall adopt a normalization conven-
tion such that pex.x/ gives the actual particle density un
units of particles per em'. for example'. More formally.
p 15 the one-body reduced density operator which 1s
detined oa a single-particle Hilbert space 'Reichl, 1930,
Chap. 7. The complete density matrix defined on the
many-particle Fock space tsecond quantization' may still
be normalized to unity. The focus upon a single-particle
description requires that one exercise some ciare concern-
ing the quantum statistics. For example. if the equilibn-
um density operator is obtamed by solving the Bloch
equation. dp - 33 = — Hp. the result will sansty Maxwell-
Boltzmann statistics. A similar calculation in the Fock
space will, of course. satisfy Fermi-Dirac statistics.
For a system described by a simple single-particle
Hamiltoman.
Ao
S i U S 1

Im Jx-

[£%]
ts

the time evolution of the density matrix 15 given by the
Livuville-von Neumann equation:

J
14 ={Hpl=Lp

e
# Ly 8 1
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2m | dx- Axt !‘ [ b
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where £ is the Liouville superoperator. The simplest ap-
proach to modeling the belravior of apen sys! ms 1s to ap-
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ply the Liouville equation to a finite spatial domain
representing the system of interest and to apply boundary
conditions that model the openness of the system. The
difficulties and ultimate success of this approach involve
the effect that such boundary conditions have upon the
properties {particularly the eigenvalue spectrum) of the
Liouville superoperator.

C. Linear algebra of superoperators

A central issue in the development of a kinetic model
for open systems is the stability of the resulting time-
dependcnt solutions, which depends upon the eigenvalue
spectrum of the Liouville superoperator. Zwanzig (1964)
has presented an excellent discussion of the properties of
superoperators {(or tetradics). However, the present
analysis requires a somewhat different group of expres-
sions, so the subject will be developed here. The density
operators that represent the state of a statistically mixed
system themselves form a linear vector space analogous
to the space of pure quantum states represented by wave
functions. A linear combination of density operators
might be used to describe the results of superposing two
partiaiiy polarized beams of particles, for example (using
the present normalization of p). Anything that generates
linear trunsformations on a density operator [such as the
right-hand side of the Liouville equation (2.3)] is a su-
peroperater. In a finite, discrete system with N states, a
wave function will be a vecter (a singly-indexed object)
with N clements, the density operator will be a matrix (a
doubiy-indexed object) with N7 elements, and a super-
operator will be a tetradic (a quadruply-indexed object)
with \'* clements. The lincar algebra of superoperators
is isomorphic to that of ordinary operators, but to define
concepts such as Hermiticity or unitarity of superopera-
tors, we must have a definition for the inner product of
two ordinary operators. The simplest definition is

(A4:B)~Tri4'B), (2.4)

where 4 and B are operators and the notation (|| ) is in-
troduced to indicate expressions in the linear space of
operators. It is easily shown that this satisfies the axioms
(Apostol, 1969) defining an inner product on a complex

vector space. Then a Hermitian superoperator #
satisfies

CAN/HB)Y =(HA|B) , (2.5)
and a unttary superoperator 1/ satisfies

Ctr431UB) =CAIB) . (2.6)

Superoperators are usually derived from ordinary
quantum ohservable operators by forming the commuta-
tor or anticommutator with the operator being acted
upon. For an operator C let us denote these superopera-
tors

¢ A4 -CA~ AC , (2.7)
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CosyA=1[CA+ AC) . (2.8)

If C is Hermitian (C'=C), the Hermiticity of ¢, , and
@, ., follow immediately:

(@,_,A||B)=Tr[(CA— AC)'B]=Tr(A'C'B-C'4'B)
=Tr(A'CB—CA4'B)=Tr(4'CB -~ 4'BC)
=Tr[ ANCB—BC)|=(A(/¢,_B) .

and similarly for ¢, ,. The Hermiticity (or lack thercof)
of the Liouville superoperator is the critical issue in for-
mulating a kinetic model of open systems.

Of particular importance are the superoperators gen-
erated by the position operator x and the momentum
operator p, ={#/i)d/0x:

%(+)=%(x+x,), (2.9)
X )=x—x", (2.10)
#la @
P = | -2 2.1
Pris) 2i |ox  dx’
#i|ad d
7 =— | —+— (2.12)
P i |ox odx’

These superoperators obey the following commutation
relations:

(X 40P J=1X WP\ ]=0, 213
(X P =0, P I=ih (2.14)
Thus y, ., is in some sense conjugate to /°,  , and y

bears a similar relationship to 7, , ,. Of course ¢, .  com-
mutes with C, _, for any operator C.

D. trreversibility

Kinetic theory appears to be the simplest level at
which one may consistently describe both quantum in-
terference and irreversible phenomena (Prigogine, 1980).
The only available levels that are simpler, in that they re-
quire fewer independent variables, are hydrodynamics
and elementary (single-particle, pure-state) quantum
mechanics. Hydrodynamics (as embodied in QOhm’s law
and the drift-diffusion equation in solid-state physics)
provides no means to describe quantum effects such as
resonance phenomena because it retains no information
on the distribution of particles with respect to energy o
momentum. On the other hand, if one attempts to in-
clude irreversible processes within the framework of ele-
mentary quantum mechanics, the continuity equation is
most often violated. Irreversible processes will generally
result in the time dependence of some physical observ-
able showing an exponential decay. The only time depen-
dence provided by elementary quantum theory is the
e "'E'/% dependence of the wave function. Exponential
decay implies that E must have a negative imaginary
part, which means that the electron (for example) ex-
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ponentially disappears, violating charge conservation.
As we have seen, violations of continuity still occur when
the irreversible processes are described by the Fermi
golden rule or Pauli master equation (see Appendix B).
To maintain consistency with the continuity equation, we
must allow off-diagonal elements of the density matrix (in
the eigenbasis of the Hamiltonian) to develop as the sys-
tem evolves (see Peierls, 1974). Because we do not know
a priori which off-diagonal elements are required, we
must admit all off-diagonal elements. A theory that de-
scribes the evolution of the complete (single-particle) den-
sity operator, including the off-diagonal elements, is by
definition a kinetic theory.

To express this point in another way, we cannot, in
general, assume that the particles in an irreversible system
occupy the eigenstates of the Hamiltonian. The proper
basis states for a one-particie description are the eigen-
states of the density operator, and thus the specification
of the basis set should be a result obtained from a proper
theory, rather than an a priori assumption in the theory.
The exception to this situation is the particular case of
thermal equilibrium. In this case we know that the den-
sity operator is a function of the Hamiltonian (via the
Bloch equation, p e “#H), and if an effective one-particle
Hamiltonian is an adequate description, the particles in
the system will be found in eigenstates of this Hamiltoni-
an, if they are in equilibrium.

The usual way to describe the effects of irreversible or
dissipative processes at the kinetic level is to add a col-
lision term (of one form or another) to the Liouville equa-
tion (2.3) to obtain a Boltzmann equation. This is a vahd
procedure so long as the dissipative processes are
sufficieutly weak that the motion of the particles can be
viewed as periods of free flight interrupted by collision
events. Such a term takes its simplest form for interac-
tions between the particles of interest (i.e., electiuns) with
particles that either are spatially fixed (such as impurities
in solids} or can be modeled as components of a thermal
reservoir (such as the phonons). In this case (and within
the Markov assumption) the collision term is a simple
linear superoperator expression, and we can write the
Boltzmann equation as

dp/dr=(L /ifip+ Cp , (2.1%)
where (* is the collision superoperator. (We shall see
later what condition ¢ must satisfy to preserve the con-
tinuity equation.) For two-body collisions the operator is
a more complex object, operating on a two-body density
matrix or (if the Stosszahlansatz is invoked) a product of
one-body density matrices which introduces nonlinearity.

A characteristic feature of irreversible systems is the
existence of stable stationary states, which can be either
the equilibrium state or a nonequilibrium steady state if
the system is driven by an external agency. Perturbations
upon such a steady state will, in general, decay. To de-
scribe this decay the Boltzmann superoperator £ /ifi+ €
must have eigenvalues with negative real parts. In the
usually studied case the Liouville superoperator is Her-
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mitian, so L /ifi by itself would produce purely imagi-
nary eigenvalues. The collision operator € introduces
the negative real parts of the eigenvalues. Physically, we
expect that there should be no eigenvalues with positive
real parts, because these would correspond to exponen-
tially growing modes, and the system would not be stable.
The presence of eigenvalues with negative real parts to-
gether with the absence of eigenvalues with positive real
parts implies that the system is time irreversible.

The study of the fundamental origins of irreversibility
in physical theory remains an area of active discussion
and debate, more than a century after the question was
first raised. However, if one’s objective is to develop use-
ful models of physical systems with many dynamical
variables, rather than to construct a rigorously deductive
mathematical system, it is clearly most profitable to
adopt the view that irreversibility is a fundamental law of
nature. For the present purposes a more precise state-
ment of this law is that “simple” systems will always
stably approach a steady state. In this context simple
systems are those which can be regarded as being com-
posed of a single type of particle or single chemical
species and such that all other types of particle or excita-
tion can be represented by thermal reservoirs. {Mui-
ticomponent systems can display exponential growth or
stable oscillation (Prigogine, 1980).] The stability of the
physical system implies that the kinetic superoperaior
that generates the time evolution of the density matrix
(whether it be of the Liouville, Boltzmann, or some other
form) cannot possess eigenvalues that would lead to
growing exponential solutions. That is, there can be no
eigenvalues with a positive real part. This condition will
determine the sort of boundary conditions that can be
used to model open systems.

Throughout most of the present analysis the collision
terms will be neglected, because we shall see that irrever-
sibility enters through the open-system boundary condi-
tions. The irreversible open-system model permits a wide
variety of phenomena to be described at least qualitative-
ly without invoking a collision term. This is not to say
that irreversible collisions or dissipative interactions
within a system are not significant effects. Indeed, a cen-
tral thrust of traditional transport theory is the deriva-
tion of kinetic descriptions of such phenomena. The
present neglect of the collision term is merely for the sake
of simplicity, and it should be borne in mind that such a
term may be readily added to any of the calculations to
be discussed (see Appendix F).

il. TIME-REVERSIBLE OPEN-SYSTEM MODEL

To describe the behavior of an open system, we shall
consider an approach in which the spatial domain is con-
sidered to be finite, corresponding to the extent of the
system, and boundary conditions are applied which per-
mit particles to pass into and out of the system. The first
model we shall consider employs time-reversible bound-
ary conditions which are pl.usible, but which we shali ul-
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timately see to be unphysical (Frensley, 1985). This mod-
¢l helps to define the conditions that a physically reason-
able open-system model must display.

A. Continuum formulation

To provide the motivation for the first model, let us
consider a spatially uniform particle gas of infinite extent,
—w <x <o, and take the open system to be the finite
region 0 < x </. The thermal equilibrium density matrix
for a uniform gas may be obtained by integrating the
Bloch equation (Feynman, 1972}

dp.,/98=—Hp,, . (3.1
The solution p;. {for free particles in equilibrium) is
Pregt X, X' )= = exp[ —(x —x")?/2A%+Bu], 3.2)

V2T,

where the normalization is such that pg.(x,x) gives the
number of particles per unit length, u is the chemical po-
tential, and A ; is a thermal coherence length given by

Ay =RB/m . (3.3)

Now if we arbitrarily impose boundaries along the lines
x0, x =/, x"=0, and x"=/, what boundary conditions
would p,, satisfy? Note that the dependence is only
upon {x —x’), so that dp/dx = —dp/0dx’. Thus in this
J

d _ 9

Jdx ox’

)

2m | a_x5

# | 8 ali #
2m

The boundary condition assures that the second factor in
Fqg. 13.6) s zero along the boundaries, and along the diag-
onal the potential term is zero. Thus 9p(0,0)/3t=0 and
dpil. D 7dr -0, This might be interpreted as the behavior
of a large reservoir with a fixed particle density {or fixed
pressure af the temperature is also fixed). Thus the
boundary condition (3.4} provides a plausible model for
an open system.

fn fact, the Liouville equation (2.3) subject to the
boundary condition (3.4) generates an unphysical solu-
tion in the form of exponentially growing particle densi-
ties when it is applied to more general potentials that do
not have the symmetry of the uniform field (Frensley,
1985). The nature of the time-dependent solutions
twhether they be growing, decaying, or oscillating) de-
pends upon the eigenvalue spectrum of the Liouville su-
peroperator (the definition of which requires both the
differential operator and the boundary conditions). The
problem with the growing densities (and ultimately the
identification of the correct model) is a consequence of
opening the system, which violates the Hermiticity of the
Hamiltonian operator and of the Liouville superoperator.
Recall the proof (Messiah, 1962) of the Hermiticity of the
Hamiltoman (2.2). It proceeds by invoking Green's iden-
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dx ‘a?

particular case p obeys the homogeneous boundary con-
dition
d dJ

+ — =0. 3.4
dx dx’ )

boundary

p

In other words, the directional derivative of p in a direc-
tion parallel to the principal diagonal is set to zero at the
boundaries.

Is Eq. (3.4) the appropriate boundary condition for a
general open system? Let us explore some of its conse-
quences. Suppose at time t=0 we apply a uniform force
field £ to the particle gas. The sulution o the Liouville
equation (2.3) over the infinite domain and with initial
condition (3.2) describes an accelerating gas and 1s given

by

(x —x'): . 139
Now p,.. also obeys Eq. (3.4), so it is also the solution to
Eq. (2.3) over the finite domain subject to boundary con-
dition (3.4).

A more general consequence of boundary condition
(3.4) is that the particle densities at the boundaries, p(0,0)
and p(/,1}), remain constant as the density matrix evolves
with time. To demonstrate this, note that we can factor
the hyperbolic operator in the Liouville equation (2.3) de-
rived from the kinetic energy terms as

Pacc{ X, X1 =pregl X, X" JeXp

it
#

1360

tity to transpose the Laplace operator, which leaves a
surface term. The precise expression is

f H ~H*)d~‘x=ﬁf j-d’s, (37

Q i 7
where () refers to the volume of the domain, 15 its sur-
face, and ) is the current-density operator. One mam-
tains the Hermiticity of the Hamiltonian by choosing
basis functions for which the surface integral is identical-
ly zero: states well localized within the domain and sta-
tionary scattering states (or periodic boundary condi-
tions) for which the incoming and outgoing currents can-
cel. Because the total number of particles in an open sys-
tem can change in response to externally imposed condi-
tions, such a basis set is too restrictive.

The violation of the Hermiticity of the Liouville su-
peroperator follows directly from the violation of Hermi-
ticity of the Hamiltonian. This leads to eigenvalues of
the Liouville superoperator that have nonzero imaginary
parts, leading to real exponential behavior in the time
dependence of p. As mentioned previously, the inclusion
of dissipative interactions will introduce decaying ex-
ponential behavior. It is thus quite enlightening to ob-
serve both the separate and combined effects of dissipa-
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tion and open-system boundary conditions on the eigen-
value spectrum of the Liouville superoperator (though
technically it is no longer the Liouville operator when
dissipation is included). For this purpose let us consider
an extremely simple model of dissipation. This model is
simple Brownian motion as described by the Fokker-
Planck or Kramers equation (Kubo, Toda, and
Hashitsume, 1985). It is classically valid in the limit that
the particles of interest are weakly coupled to an ideal
reservoir. Caldeira and Leggett (1983) have studied the
quantum-mechanical derivation of this equation and
have shown it to be valid at higher temperatures (%
smaller than or comparable to the response time of the
reservoir to which the particles are coupled). In terms of
p the Fokker-Planck equation may be written in the form
of Eq. (2.15) with the collision operator given by

(x—x") | @ d m 2
= — —_— ) +___ —_—!
Crop y 5 o 1P ﬁzﬁ(x x')p
=—y(iX,_ P\ /A+XE_\/Arp (3.8)

where v is the damping rate. The first term in Eq. (3.8)
describes dissipation and corresponds to a frictional force
equal to yp, where p is the linear momentum. The
second term describes the thermal fluctuations. An im-
portant property of Cgp is that (Cppp)x,x)=0, which is
required for consistency with the continuity equation.
C'gp will be used below to add dissipative interactions to
our open-system models.

B. Discrete numerical model

To explore the eigenvalue spectrum of the present
open-system model and those which will be investigated
later, let us consider a finite-difference approximation to
the Liouville equation (2.3) which reduces £ to a finite
matrix whose eigenvalues may be readily computed. Let
me emphasize that only the spatial coordinates will be
discretized; time remains continuous, so that the partial
differential (and eventually integro-differential) Liouville
equation will be reduced to a set of coupled ordinary
differential equations with respect to time.

This particular situation requires some discussion.
Throughout the computational physics literature, discus-
sions of stability always involve a discretization with
respect to time. Because one is accustomed to dealing
with continuum equations whose behavior 1s known to be
stable (or at least physical), the common assumption that
any instability must be a result of the discretization
scheme is generally correct. However, a different situa-
tion is being studied here. The validity of the equations
themselves (or more precisely the boundary conditions) is
the issue. If a discrete-space, continuous-time mode] is
unstable, there will be no time discretization that will
correct this instability. On the other hand, we wish to as-
sume that the stability of the discrete-space, continuous-
time model will be indicative of the stability of a
continuous-space, continuous-time model. As mentioned
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Lij=7—"7" -6

before, this connection requires a logical induction.

The position coordinates x will be taken to be elements
of a uniformly spaced mesh: [x|x;=jA, for
j=12,...,N}]. The dependent quantities such as the
wave function and density matrix then take on discrete
values also, which will be denoted by ¥;=y(x;) and
p;; =p(x;,x;). Using the simple finite-difference approxi-
mation (8*/8x2), =(y, ., —2¢,+¢, ) /AL, we find
that the Hamiltonian (2.2) becomes

2
H,=—T—28
2

i _8
mA? /

8;v1,) 0,8 (3.9)

i1, ij 0
for i,j not on one of the boundaries. To incorporate the
boundary conditions, it is best to think of adding an addi-
tional mesh point at each end of the domain (points x,
and xy , ), and specifying the value of the wave function
on those points. For example, to apply the homogeneous
Dirichlet conditions for a particle in a box, we would set
¥,=0 and ¢ ,,=0. Inserting these conditions into Eq.
(3.9) completely defines the matrix H,, for 1<ij<N.
Similarly, if we wanted to apply Neumann conditions,
dY/3x =0, we would set ¥,=1,.

Writing the Liouville equation (2.3} on the finite-
difference basis gives

A/, =L, pa (3.10)

where the tetradic nature of £ is made explicit. The
discrete representation of £ may be derived from Eq.
(3.9) and is

# ‘ «
|_Lb;l _61 + l,kb// +61k61 L

1

2mA®

X

+5ik5]+,‘,)+(u,—vj)5,k5j, . (3.11)

Again, the elements adjacent to a boundary require spe-
cial attention.

To evaluate the eigenvalues of £ and other super-
operators, we must map the tetradic onto an ordinary
matrix, so that conventional eigenvalue algorithms may
be applied. To do so for the finite, discrete case, we may
map the density matrix p onto a singly subscripted vector
of dimension X" by p,, ~»p,, with m ==(i =1)N +j. Note
that with this mapping the inner product between two
operators (2.4} becomes the ordinary inner product be-
tween two vectors. The mapping of the tetradic L onto
an N’XN? matrix follows immediately. The matrix
representing £ was actually constructed for N=8 (result-
ing in a 64X 64 matrix for £ ) using the potential illus-
trated in Fig. 4. Let us first consider a closed system
with no damping. This model is obtained by simply ap-
plying the particle-in-a-box (homogeneous Dirichlet)
boundary conditions to the Liouville operator (3.11).
The resulting eigenvalue spectrum is shown in Fig. 5(a).
All the eigenvalues are purely real, as expected from a
Hermitian superoperator.

In the second case the model system is taken to be
closed, but damped. The Fokker-Planck damping opera-
tor (3.8) may be written in di ~retized form as
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SO 7 (e ()
Cijinr =~ AL W Buby ==X (J=(28,8,

This form preserves the important properties of Cgp. To
illustrate the effect of dissipation on the spectrum of
(L +i#fiCgp), the zero-temperature limit (B— ) was
taken (so that the first term, describing fluctuations, van-
ishes) and the damping constant y=0.0lw, (where
wo=#/2mAy) was used. The resulting eigenvalue spec-
trum is shown in Fig. 5(b). Negative imaginary parts
have been introduced into all the eigenvalues (except pos-
sibly one eigenvalue which is equal to zero within the nu-
merical roundoff error, which presumably represents the
ground state). These negative imaginary parts lead to
damped motion, as expected.

Now with this background we can consider the case of
the open-system boundary conditions (3.4) (zero diagonal
gradient). The simplest finite-difference approximation

for the condition (3.4) is
d J 11 1
55*’55 = A—X(P,+1,1_Pij)+A—x(Pn“Pi.j—|)

=1

A"(pl‘l-]_p“' ! 0, (3.]3)

R

for i or jequal to 1 or N. T1hus the open-system Liouville
superoperator L' (for open system, reversible) is ob-
tained by inserting boundary values p,,=p,.,, and
Py i1, =pPn, 1 ‘and the expressions obtained by tran-
sposing the indices) into Eq. {3.11). For the sake of com-
pleteness, let us write down the elements of £'°"' that are
affected by the boundary conditions:

0.2 T T T T T T T
- . . -
o. 1 - -
d i ]
3
0.01- o -
% 5 ot L 4
[+ N
—-0.1} L4 ® ]
- ® 4
-0.2L 1 ! 1 1 1 1 1
1 2 S 4 5 6 7 8
Position

FIG. 4. Potential used in evaluating eigenvalue spectra of Liou-
ville superoperators in the discrete model. This potential was
chosen to have both a driving field and a barrier.
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17818 =8y 8; 4 y) forij

., (3.12)
’_85.;]‘[61'/(_8“‘.5]-_1'1) for i <J.
T
tor) ﬁz
LS y=—— =8, (8 T8,:8, )+, ~v,)5,8,, .
1;k1 2m AL i 1,k01,0 T 0,0y 10,40y
(or) # :
L= Sm AL (—=8,48; 18,48, )+(v;—v,0,,0, .
) REEY
{or) ﬁz
"LL’V;kI:W(_6:+l,k5N1+6ik8N~l,k)

+(U,~ —Un )S,A. BN/ .
ﬁ2

L(Q;) —
Nj:kl
! 2mA?

( "5;v - l.k8jI +5Nk5, t 1,1)

+( U — Uj )8.\!]\. 8// .

The non-Hermiticity of .£'°" follows from these expres-
sions. For example, L%, | ,=—#/(2mA?). bui
L3°") |.,;=0. The boundary conditions have caused ele-
ments of .L to be canceled in a way that breaks the Her-
mitian symmetry. The resulting eigenvalue spectrum is
plotted in Fig. 6(a). The non-Hermiticity of £'°"' leads to
some eigenvalues with nonzero imaginary parts. It is ap-
parent that these eigenvalues occur in complex-conjugate
pairs, with both positive and negative imaginary parts
present. This is a consequence of the time-reversal sym-

(a) 0.10p——Trr—rrrrryrr Ty
0.05F b

= F 5
E O.OO‘WTW
-0.05F .
_0.10"........1L‘...|...L saaddasasdaaaataas
(b) 0-10 ML AL AL B SR AL ELELEE BL AL A B AN S A NN AR |I-I-]--vfyvy'v.
0.05F E

z | _
s 0.00f % :
.g XXX%»‘X%)%«K &MW’*XX%
-0.05F ]
_0_10'.“““4....“ U DT SO
-2 -1 1 2

FIG. 5. Eigenvalue spectra of the Liouville operator for a small
model closed system with the potential shown in Fig. 4. If the
system is taken to be conservative, the resulting eigenvaluc
spectrum is shown in (a). All eigenvalues are purely real. as ex-
pected. In (b) a damping term has been added, leading to nega-
tive imaginary parts for most eigenvalues.
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metry of both the Liouville equation and the open-system
boundary conditions (3.4). The eigenvalues with positive
imaginary parts produce growing exponential solutions
to the Liouville equation, which would prevent any ap-
proach to steady state. This open-system model is thus
physically unacceptable.

One might speculate that the problem of growing solu-
tions could be due to the absence of damping in the mod-
el. To test this, let us add in the Fokker-Planck damping
term (3.12), as we did for the closed-system model. With
the same damping constant (y =0.01lw,) as before, the
resulting eigenvalue spectrum for (L'°"+i#Cgp) is that
shown in Fig. 6(b). The addition of damping clearly does
not solve the stability problem because it does not re-

(a) 0.10~rrr—rrrrrrer A ——
L X XX X
0.05F 3
- s x X X x x o 3
~< [ p
E 0,00ﬂ*WW*—)H(—W
-0.05F
-0.10F
(b) 0.10p
0.05F
= s
< 0.00f
L bxooex X X
-0.05F
[
-0.10k
(e) o0.10

0.05¢f

0.00

Im(A)

-0.05

FIG. 6. Eigenvalue spectra for open systems using the bound-
ary conditions of Eq. (3.4). If the boundary conditions are
changed 50 as to open the system, nonzero imaginary parts are
generated. as in {a). Because the boundary conditions are time
reversihle, these imaginary parts occur in conjugate pairs. If a
damping term is added as in (b), most, but not all, imaginary
parts are negative. The few eigenvalues with positive imaginary
parts are sufficient to render the model unstable. Stability can
be achieved by increasing the damping rate, leading to the spec-
trum (ch.
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move the positive imaginary parts. In fact, a larger
damping constant does lead to a stable model, as shown
in Fig. 6(c), where y =0.03w, was used. All the eigenval-
ues now have negative imaginary parts, except for a dou-
bly degenerate eigenvalue at zero (which must be present
because of the invariance of p,; and pyy ).

Thus modeling an open system by applying the bound-
ary conditions (3.4) will work only if the rate of damping
within the system is sufficiently large (or, for the case of
electron transport, if the mobility is sufficiently low).
The minimum acceptable damping rate depends upon the
magnitude of the imaginary parts of the eigenvalues of
L'°" for the undamped system, which in turn depends
upon the form of the potential. In fact, the potential of
Fig. 4 was chosen because it produces larger imaginary
parts than potentials with greater symmetry. All this
adds up to a very unsatisfactory formulation for an
open-system model. The problems may be traced to the
time-reversal symmetry of the boundary conditions. To
obtain a proper formulation, this symmetry must be bro-
ken.

IV. IRREVERSIBLE OPEN-SYSTEM MODEL

To provide a physical motivation for the ideas that
openness necessarily involves time irreversibility, let us
consider another example system drawn from electronic
technology, the vacuum thermionic device (“‘vacuum
tube” or ‘“‘valve”) (Langmuir and Compton, 1931; East-
man, 1949). These devices were made by introducing two
or more metallic electrodes into a vacuum through which
electrons could be transported without dissipation.
When a voltage was applied between anode and cathode
(and the cathode heated to thermally excite electrons into
the vacuum), a nonequilibrium steady state would be es-
tablished with a nonzero current flowing. Such a non-
equilibrium steady state cannot be established in a rever-
sible (or Hamiltonian) system. Consider what would hap-
pen if a population of electrons were introduced into
some sort of trapping potential in ultrahigh vacuum.
The system would effectively be closed, and the motion of
the electrons would consist of periodic (thus, reversible)
orbits. Of course what happened in the case of the ther-
mionic vacuum tube is that electrons were accelerated by
the electrostatic field until they impacted the anode,
where they lost their kinetic energy to collisions with the
electrons in the metal. Their energy was thus dissipated
as heat. However, we can infer a much broader principle
from this device: Making contact to a system in such a
way as to permit particles to enter and leave (opening the
system) in itself introduces irreversibility into the behav-
ior of the system, so long as the contacts have a sufficient
number of degrees of freedom and enough indistinguish-
able particles to behave as reservoirs.

Now, if the openness of the system is to be modeled by
boundary conditions applied to the system, these bound-
ary ccenditions must themselves be time irreversible. A
physically appealing way to ~chieve such irreversibility is
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to distinguish between particles moving into the system
and those moving out of the system. It is then reasonable
to expect that the distribution of particles flowiug into
the system depends only upon the properties of the reser-
voirs to which the system is connected, and that the dis-
tribution of particles flowing out of the system depends
only upon the state of the system. The behavior of the
reservoirs is thus analogous to that of an optical black-
body. This picture leads to a fully acceptable model of
an open system.

A. Continuum formuiation

To implement boundary conditions that distinguish be-
tween particles flowing into and those flowing out of a
system, we must reexpress the Liouville equation (2.3) in
terms of the classical phase space (g,p), where ¢ in this
case corresponds to the position x and p is the momen-
tum. This is naturally done by the Wigner-Weyl trans-
formation, which transforms the density operator p(x,x’)
into the Wigner distribution function f(q,p) (Wigner,
1932: Heller, 1976; Berry, 1977; Carruthers and Za-
chariasen, 1983). For the present purposes, the Wigner-
Weyl transformation consists of a change of independent
coordinates to the diagonal and cross-diagonal coordi-
nates':

g=1llx+x"), r=x-x', 4.1

followed by a Fourier transformation with respect to r.
The variables x and x’ may be expressed in terms of ¢

and r by
x=q+ir, x'=q-1ir. (4.2}

Thus the Wigner distribution can be expressed as

flq.p)—':fl drplgtir,g—irie o (4.3)
The Liouville cquation becomes

P dy,

2 —p' ) fgp'),
at m dqg A L2k TP PP

(4.4)

where the kernel of the potential operator is given by
Vig,p)= 2f “dr sin(pr/ANvig +ir)—vig—1n].

0 - -

(4.5)

These are often referred to as “center of mass™ and “relative”
coordinates, respectively. I fecl that this is a misleading termi-
nology. because it gives the incorrect impression that one is
dealing with a two-body problem. We shall see below that the
significance of these coordinates follows from their relationship
to the superoperators X, and X, [Egs. (2.9), (2.10)] generat-

ed by the position operator.
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These expressions are derived under the assumption that
the domain is unbounded.

Let us consider the interpretation of the terms of the
Liouville equation (4.4). The first term on the right-hand
side is derived from the kinetic-energy operator and i1s of
the form known as a drift, streaming, or advection term
(in various nomenclatures). This term is exactly the same
as the corresponding term of the classical Liouville equa-
tion with force F:

Fa__p¥a _

4,
dt m dq dp 4.6

The correspondence between the classical and quantum
drift terms will be exploited in defining the open-system
boundary conditions.

Quantum-interference effects enter the Wigner-Weyl
representation via the nonlocal potential term of Eq.
{(4.4). The kernel of this operator, V(g,p —p’), in effect
redistributes the Wigner function among different p's at
each position g. The extent to which it does so depends
upon the potential at positions remote from g {Eq. (4.5)].
This is the way that interference between alternative
paths is incorporated into the equation. Thus a rough in-
tuitive image of the action of ¥(g,p —p’) is that it
represents particles that have scattered off the potential
at some point ¢+ 17 and, upon returning, interfere with
the particles propagating over other paths. This image
will be invoked to interpret the effects of cutting off the
integral in Eq. (4.5) at some finite value, which is required
in practical computations.

Let us now consider a model in which the domain is
bounded by ¢ =0 and ¢ =/. To address the question of
boundary conditions, first note that in the Wigner-Weyl
representation, the Liouville equation (4.4} is of first or-
der with respect to g and does not contain derivatives
with respect to p. The characteristics of the derivative
term are lines of constant p, and we must supply one and
only one boundary value at some point on each charac-
teristic, because the equation is of first order on g. The
kinds of boundary conditions that are appropriate are il-
lustrated in Fig. 7. To implement the picture described
above, that the particles entering the device depend only
upon the state of the reservoirs and that the particles
leaving the device depend only upon the state of the de-
vice, we should apply the boundary conditions illustrated
in Fig. 7(c). That is, we set

f(o'p)ip »():f(hlglrnlx:dnr_\(p) *
f(lvp)’p < ():fo:\ﬁ::l:xr>(P) ’

where f1<f'', is the distribution function of the reser-
voir to the left of the system and £}, is the distribu-
tion function of the reservoir to the right. These bound-
ary conditions are not invariant under time reversal, be-
cause time reversal would change the problem of Fig. 7t
into that of Fig. 7(d).

Conceptually, the boundary conditions (4.7) are identi-

cal to those employed in the conventional tunnching

4.7
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FIG. 7. Possible boundary conditions for the Liouville equation (4.4) in phase space. The points at which the boundary values are
specified (indicated by a heavy line) can be at ¢ =0 as in (a), at ¢ =/ as in (b), or divided between the two boundaries, depending upon
the sign of p, as shovn in (c) and (d). The boundary conditions (c) are, in fact, the appropriate ones for an open system.

theory (see Appendices A and D), in the Landauer ap-
proach (Landauer, 1957, 1970; Biittiker et al., 1985,
Stone and Szafer, 1988), and in solutions of ihe
Boltzmann equation for nonuniform systems (see Appen-
dix C and Duderstadt and Martin, 1979). However,
some care must be taken in this identification. It is true
that the variable p goes over into the classical momentum
appearing in the Boltzmann equation, by the correspon-
dence principle. However, it is not true that p is the same
quantity as the operator p, =(#/i)d/dx or its eigenvalue.
In particular, as will be discussed in Sec. VLA, the
traveling-wave boundary conditions actually depend
upon the energy of the state, rather than p. Thus the
boundary conditions (4.7) are conceptually identical to,
but mathematically different from, those employed in the
tunneling and Landauer approaches.

Let us call the Liouville superoperator which results
from the boundary conditions (4.7) .£'® (for open system,
irreversible). For purpose of the present discussion, it
will be separated into two terms:

=i A T+IRY (4.8)

where ‘7 is the superoperator derived from the kinetic-
energy term of the Hamiltonian,

Tr=-2Y 4.9)
rs m dq ’

and where 'V is the superoperator derived from the po-
tential term,

) \  dp'
(Ving.pr=—+ [ vigp-pfigp) .

PR R (4.10)
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Let us note in passing that YV can be written in two other

forms. One is Groenewold's expression (Groenewold,
1946):
1 ifi 0
(\f = | — 4 —_—
e =% “[q 2 o }
i d
- - (g,p) .
975 ap‘ fla.p

4.1
The other is the Wigner-Moya! expansion (Moyal, 1949):

(#7210 3" ig)

‘Vf(q,p)=—% S (—1y

R (n +101 a2+
3" f(g,p)
ap2n+1
——Zgin gs%g— 0(9)f(g.p) , (4.12)

where in the last expression it is understood that 3/dq
acts only upon v{q). The utility of both of these expres-
sions depends upon the existence of a rapidly converging
series expansion for v(g). Such an expansion is not avail-
able for the abrupt energy-barrier structures that origi-
nally motivated the present study, so the integral form of
YV (4.10) is preferred for practical computations.

B. Discrete model

To investigate the eigenvalue spectrum of the Liouville
operator subject to the t-undary conditions (4.7) we
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again construct a small, discrete model. The position
variable ¢ will take the same set of discrete values that x
did in the previous section: {gq;lq;=jA, for
J=12,...,N,}. The values of p are also restricted to a
discrete, bounded set: {py [p, =(mfi/A [k —1)/N,— 4]
for k=1,2,...,N,}. The mesh spacing in the p direc-
tion is thus A, =(mfi)/(N,8,). The choice of discrete
values for p follows from a desire to avoid the point p =0
and the need to satisfy a Fourier completeness relation,
which will be discussed later. The discrete Wigner distri-
bution is then related to the discrete density matrix of
Sec. I11.B by

K ~2ip, 1A /R
= . A 4
Sk 2 Pyt ’

bl

] *.\q/

4.13)

where j indexes position ¢, and k indexes momentum p.

The discrete version of the potential term is readily
defined. Using Eq. (4.13), we find that the discrete po-
tential kernel becomes

N2 ZkAj'A
V_,kz% 3 sin | —— "y e ) (414
pojE

[Notice that Eq. (4.14) invokes values of v, that are out-
side the domain {q,!j=1,...,N,|. This expresses the
nonlocality of quantum phenomena and is one way in
which the environment of an open system influences the
system’s behavior. The values that one assumes for v,
where j <0 or j > N,, depend upon the nature of the en-
vironment. If ideal reservoirs are assumed, then setting
these values equal to the potential at the appropriate
boundary appears to be an adequate procedure.] The ele-
ments of 'Y are then

Y/A./'L’ =-—b 'V/,lk - I.'mmd;'\'p/ﬁ: 46]]'V];A.A'/ﬁ ’

1
(4.15)

where the notation V., =V, .\ (- megy, 18 introduced
i

to shorten the expressions to be derived from the discrete
Liouville equation. Note that the elements of V are real
and that V. ..=—=Y . so (GAV) is an imaginary
Hermitian superoperator.

The boundary conditions (4.7) affect the form of the
drift term ‘T because they determine the proper finite-
difference form for the gradient. On a discrete mesh, a
first derivative (3f /dq)(q,) can be approximated by ei-
ther a left-hand difference,

C_V (‘l/ = [q’, I , 4.16)
aq left Aq
or a right-hand difference,
[ )—flg)
%f (g)=" 04 417
q right Aq

(There is also a centered-difference form, [fl(q,.,)
- flg, l)]/ZAq, which has poor stability properties
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when used to approximate a drift term.) The boundary
conditions determine which of the above difference forms
must be used simply because one or the other will not
couple the boundary value into the domain. Again, let us
imagine that the boundary conditions 4.7) are imple-
mented by fixing the value of f on mesh points just out-
side the domain:

— ¢'lefu
f().k _fbnunduryk

— ginghti
f.'\’q t1.A fhnundur)A

fOrpk >O,

4. 18
for p; <0 .

This scheme ic illustrated in Fig. 8

ated in Fig. 8 Coensider p; - 0. The
boundary conditions are specified for g,,, and if this value
is to be coupled into the domain, we must use the left-
hand difference formula (4.16) for the gradient at g,.
Coasistency then requires that we use the left-hand
difference for all g; (for p, >0). Similarly, we must use
the right-hand difference (4.17) for p; <0. In the context
of hydrodynamic calculations such a difference scheme is
called an ‘“‘upwind” or “‘upstream” difference and is
known to enormously enhance the stability of a computa-
tion (Roache, 1976, pp. 4-5). It has also been used in
neutron transport calculations at the kinetic (phase
space) level (Duderstadt and Martin, 1979). The ele-
ments of ‘T are thus

|6 &, . forp, - 0

P RS NN
Ty = _;A;B“'X 16“.—6/ i, forpg 07
19
The terms T, , ., and T“},J‘i"g .1« couple to the fined

boundary values of f and are thus the coeflicients of in-

BE->0>0>0>0—>0 >

-—lboao—>o—>o—>o~l>

p‘[ W3>03>0>0>0>0>

q €«0€0€c0€0c<€0o<n
¢« 0€C0€c0€C0€c0O<n
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O Variable internal node
® Fixed boundary node

FIG. 8. Discretization scheme for the kinetic-energy super-
operator (drift term) ‘T in the Wigner representation. The flow
of probability between mesh points is indicated by the arrows,
which also define the sense of the finite-difference approaima-
tion for the gradient. A flow toward the right requires a left-
hand difference and vice versa. This is the “upwind™ difference
scheme and is uniquely determined by the form of the boundary
conditions (4.7).
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homogeneous terms and are not strictly elements of 7.
{In particular, these terms are not included in the eigen-
value calculation because eigenvalues are properties of
homogeneous linear operators.) It is convenient to group
these terms into a boundary contribution b, :

Px
blk = mAq f{)(;\?n’daryk fOl’ Pk >0 ’
p (4.20)
k .
b.\'qk == ﬁ;fu;g::i;ryk for Pi <0.

The discrete form of the Liouville equation then becomes

Af

1 oi
TRt A‘Ek’i_(ik;)j‘k'fj'k'+bjk , @.21
A

with the inhomogeneous terms explicitly displayed. Ex-
panding the definitions of the operators, the Liouville
equation can be written as

ik _ P % Siv1x—fix for p, <0
ar mAq fj,k—fj-l_k fOI'pk>0

1
—7 2 Viww e -
#i & Ckkd

(4.22)

This provides a more convenient starting point for many
of the manipulations that will be described below.

The eigenvalue spectrum for L' constructed from
Egs. (4.8), (4.15), and (4.19) is shown in Fig. 9. The po-
tential of Fig. 4 was used, with §,=8 and N,=8. All
the eigenvalues of £L'™' have negative imaginary parts.
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FIG. 9. Eigenvalue spectrum for a model open system with ir-
reversible boundary conditions. All eigenvalues have negative
imaginary parts, verifying that the model is stable, despite the
fact that no damping is yet included.
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(Note in particular that there is no eigenvalue equal to
zero, and thus £‘® is nonsingular). Because the eigen-
values have negative imaginary parts, the time depen-
dence of f contains only decaying exponentials, so the
model is stable. The stability of this model follows from
the boundary conditions (4.7) and does not depend upon
discretization (Frensley, 1986). To demonstrate this, let
us consider the expectation value of (L'°'/if) with
respect to an arbitrary distribution f: {f|(L'/i#)||f).
If we demonstrate that this is nonpositive for any f, we
will have shown that no eigenvalue of (L'°"/i#) has a
positive real part, because the operator itself i1s purely
real. In the Wigner-Weyl representation the operator
inner product (2.4) becomes simply (Wigner, 1971; Hil-
lery, O’Connell, Scully, and Wigner, 1984)

(FIg) =z [ da [ dp fig.p(.p) 4.23)
The expectation value can be rewritten
LN Y= NTNY+H ANV
=(fIT\f) , (4.24)

because { f||V]|f ) =0 from the antisymmetry of V. For
the mathematically homogeneous problem (source terms
set to zero) the boundary conditions are f(0,p)=0 for
p>0and f(l,p)=0 for p <0. With this we can integrate
the expectation value for T and simplify it to obtain

NN =4 [ [ o8 0p1p— = pritipidp |

1 ] «
S [f_ _pf0,pdp— [ pfz(l,p)dpl

<0. {4.25)

Thus the stability of the solutions to the Liouville equa-
tion using L' follows from the boundary conditions
alone. The physical significance of this argument is that
the particles in an open system will eventually escape and
the density will approach zero if there is no inward
current flow from the environment. However, if the po-
tential has a local minimum within the system deep
enough to create one or more bound states, any particles
in those states will not escape. Their contributions to f
will be zero at the boundaries, and this is the significance
of the case in which Eq. (4.25) is equal to zero. Such
states should correspond to eigenvalues of .£'®’ that are
equal to zero, although I have not observed such a situa-
tion in the models that I have examined. In an open sys-
tem of finite extent and with potentials of finite depth, the
tunneling tail of bound-state wave function will be
nonzero at the system boundaries, perhaps leading to a
finite rate of escape from that state within the present
model.

Let us examine how this open-system model can be
used. The methods of calculation are more readily visu-
alized if we write Eq. (4.21) ‘n a block-matrix notation:
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Here [f], and [b]; represent column vectors, and [ 7],
and [V], represent matrices, whose internal indices
range over the allowed values of k. The [T] are diagonal
matrices, whereas the [V] are dense. The block-
tridiagonal form of £ greatly reduces the computa-
tional labor required to solve the Liouville equation as
compared to that required to work with superoperators
of a more general form.

Now suppose that we wish to find the nonequilibrium
steady state (3f; /9 =0). Can we simply move the [b];
column vector over to the other side of the equation and
solve for the f;? The answer is yes, provided that the
operator £ is nonsingular. If there are no bound
states, all the eigenvalues of L' are nonzero (see Fig. 9),
so .£L'" is a nonsingular operator and its inverse exists.
This steady-state solution for the Wigner function may
be written

i

fldc):__iﬂ(m) b , (4.27)

where f'%' refers to the “direct-current™ case. Equation
{4.26) is also used to solve time-dependent problems, as
will be described in the following section.

Let us compare this approach to the most commonly
studied problem in transport theory, transport in a spa-
tially homogeneous systemn with a uniform driving field
(as is done to evaluate transport coefficients such as
mobilities) (Dresden, 1961; Conwell, 1967). This gen-
erates a mathematically homogeneous problem, and the
solution corresponds to the null space of that superopera-
tor which appears in the transport equation (Aubert,
Vaissiere, and Nougier, 1984). Thus the superoperator
must be singular and, if the transport equation is linear,
the solution is not unique (the total density is not deter-
mined). What the present model demonstrates is that
this formulation of transport through a spatially inhomo-
geneous system leads to a mathematically inhomogene-
ous problem, which is in many respects a good deal
simpler than a similar homogeneous problem. For exam-
ple, because £'""' is nonsingular, there is no problem of
compatibility relations for the boundary conditions
(Lanczos, 1961). Any choice of distribution function on
the boundary will generate a unique steady-state solution.
The same considerations apply to the evaluation of the
transient response of an open system by integrating Eq.
(4.4) with respect to . The solution in unique and, as we
have seen, stable.

These considerations clarify a point discussed by
Kluksdahl er al. (1989), concerning the role of the initial-
ly assumed Wigner function in a calculation in which the
steady state is found by simulating the time evolution.
Kluksdahl er al. assert that the initial state must be
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quantum-mechanically correct. The only components of
the initial state that remain through the time-evolution
calculation are those lying in the null space of the Liou-
ville operator. All other components will approach
steady-state values that are independent of the initial
condition. Thus, if there is no null space (the operator is
nonsingular), the initial condition makes no difference
whatsoever. A concern about the correctness of the ini-
tial state is warranted only if there are bound states
within the system, and possibly in the continuum limit
where the smallest eigenvalue approaches zero.

V. APPLICATION OF THE IRREVERSIBLE MODEL
TO TUNNELING DIODES

To illustrate the application of this irreversible open-
system modecl to a specific physical system, let us consid-
er the semiconductor heterostructure resonant-tunneling
diode (RTD; Chang, Esaki, and Tsu, 1974; Sollner o1 «l.,
1983). The study of this device provided the original
motivation for the present investigation. The RTD ex-
ploits the ability of modern heteroepitaxial technologies
to grow extremely thin layers of chemically different
semiconductors (such as gallium arsenide, GaAs, and
aluminum arsenide, AlAs) on top of one another in a s11-
gle crystal structure. To a surprising degree of accuracy,
the effects of such a structure on the motion of free clec-
trons (or holes) may be modeled by an effective potential
that is related to the local energy-band gap and is thus a
function' of the local chemical composition (Dingle,
Wiegmann, and Henry, 1974). Therefore a structure con-
sisting of a layer of GaAs a few nanometers thick placed
between layers of AlAs (or more commonly a solid solu-
tion Al,Ga,_,As with x =0.3) forms a rectangular po-
tential well of finite depth for electrons. The shift in en-
ergy due to size quantization of the states in the well is
enormously enhanced by the low effective mass of elec-
trons in GaAs (0.067 of the free-electron mass), so the
same shift is obtained in quantum wells tens of atomic
layers thick in GaAs as would be obtained in structures
of atomic dimensions in free space.

The behavior of the resonant-tunneling diode is sum-
marized in Fig. 10. The device consists of a quantum
well bounded by barrier layers thin enough to permit tun-
neling. Outside the barrier layers are thick layers of
lower effective potential, which are doped so as to have a
significant density of free electrons and to which electri-
cal contact is made. The confined states in the quantum
well thus become resonances in this structure, and elec-
trons may readily tunnel through these resonances only if
they have the correct energv. The energy of the reso-
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FI1G. 10. Summary of the properties of the quantum-well-resonant-tunneling diode. The J(¥) curve of an experimental device (Reed
et al., 1989) at a temperature of 77 K is shown to the left. The diagrams to the right show the conduction-band profile of the device
at different bias voltages corresponding to the noted points on the J (¥} curve. The shaded regions show the occupied electron states.
In equilibrium (A) the current is zero. As a bias voltage is applied, the resonant level (dotted line) is pulled down in energy so that it
lines up with the occupied electron states, permitting resonant tunneling (B). As the voltage is increased, the resonant level eventually
passes below the lowest occupied state in the cathode (left-hand electrode), and the resonant-tunneling current ceases (C). The
current subsequently increases as conduction through higher-energy states becomes possible. The rise in the conduction-band poten-
tial near the quantum well apparent in (A) is the result of a nonuniform distribution of impurity ions, which is a part of the design of

the device.

nances varies with externally applied electrostatic poten-
tial. In particular, at a sufficiently large bias voltage the
resonance is pulled below the lowest occupied state in the
cathode layer and the resonant-tunneling current ceases.
This leads to a decreasing current with increasing voltage
(*‘negative differential resistance’’), which is an unambi-
guous indication of resonant tunneling in this structure.

Over the past few years a great deal of work concern-
ing the resonant-tunneling diode, both theoretical and ex-
perimental, has been published. Most of the theoretical
treatments are expressed in terms of the transmission
probabilities associated with pure quantum states. Due
to the volume of this work, no attempt will be made to
review it comprehensively here, but we shall instead con-
centrate upon the kinetic models.

A. Steady-state (dc) behavior

The steady-state behavior of the RTD has been evalu-
ated using the Wigner function in an open-system model
by several groups (Frensley, 1986, 1987; Kluksdahl et al.,
1988, 1989; Mains and Haddad, 1988b; Jensen and Buot,
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1989a). To obtain the results described here, the steady-
state Wigner function was evaluated using Eq. (4.27) re-
peatedly for a set of potentials representing different ap-
plied bias voltages. {The assumed structure consisted of a
4.5 nm GaAs quantum well bounded by 2.8 nm
Alg 1Gag ;As barrier layers. The contact layers were as-
sumed to be doped so as to produce a free-electron densi-
ty of 2X10'7 ¢cm ™7, and the temperature was taken to be
300 K.) The boundary distribution was taken to be

fboundary(pk )=(m ./ﬂﬁzﬁ)

~Bpi/am® 4y -
XIn[1+e Ppicram = tv=p

| 5.1
to include the integration over transverse momenta.
[Here v —u is evaluated at each boundary using the
charge-neutrality condition (A5).] The current density
was evaluated from f%, and the resulting J (V) curve is
plotted in Fig. 11. Also shown for comparison is the re-
sult of a more conventional tunneling theory calculation,
such as that described in Appendix A. [More
specifically, it is the current density that would be ob-
tained by taking the expcetation value of the current




William R. Frensley: Boundary conditions for open quantum systems

3.0x10* e B I B
- -, —VWigner function
_ 2.5x10% PR Tunneling theory]
N - ’ Y g
: : S ]
g 2.0x10* ; ! 3
o F ; \ .
< ‘ ! i ]

~ 1.5x10*F / :
- - ' ' 4
[=] o /! \ ]
[ s ) ! h
b O1.0x10% s
3 S b
& F \ -~ ]
0.5x10*F T3
0.0-'....1....1...LJL4LL:
0.0 0.1 0.2 0.3 0.4

Voltage (V)
FIG. 11.

Current density as a function of voltage for a model
resonant-tunneling diode. The result of the time-irreversible ki-
netic (Wigner function) model is shown by the solid line, and a
more conventional tunneling calculation is shown by the dashed
line. While they differ in detail, the calculations agree as to the
qualitative behavior of the far-from-equilibrium steady state
and predict tunneling currents of the same order of magnitude.

operator with respect to the density operator (A6).] The
two calculations agree on the qualitative shape of the
J(V) curve and on the voltages at which the peak and
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FIG. 13. Wigner distribution function for 0.13 V bias, at the
peak of the J(V) curve. The complex standing-wave patterns

and prominent negative peak indicate that strong quantum-
interference effects are present.

One can cite at least two possible sources of this disagree-
ment. The more obvious one is that the Wigner-function
calculation necessarily introduces a limited coherence
length because in the discrete approximation the integral
defining the nonlocal potential (4.5) must be cut off at a

valley occur. There is a disagreement of some tens of

finite value as in Eq. (4.14). The tunneling theory is
percent on the magnitude of the peak and valley current.

based upon solutions of Schrodinger’s equation, which
necessarily assumes an infinite coherence length. A
second, and probably more fundamental, explanation for
the disagreement is that the tunneling and kinetic
theories are simply not equivalent (the kinetic theory be-

IS xf"‘“m""‘°°°’°i°§°$‘f’“*"m e
W R
N

Wigner distribution function for the resonant-
tunneling diode at zero bias voltage (thermal equilibrium). In
the electrode (flat-potential) regions the distribution is approxi-
mately Maxweilian (as a function of p). The density is reduced
in the vicinity of the quantum well due to size-quantization
effects. The very small ripples perceptible at larger p are due to
standing waves near the energy barriers.

FIG. 14. Wigner distribution function for 0.24 V bias, corre-
sponding to the bottom of the valley in the J(V) curve. This
case is quite similar to the equilibrium case of Fig. 12.
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amined in Sec. VI.C.

The Wigner distribution functions that underlie the
J (V) curve of Fig. 11 are illustrated in Figs. 12-14. The
equilibrium (zero-bias) case is shown in Fig. 12. The
large electron density in the electrode regions, and much
smaller density in the vicinity of the quantum well, is evi-
dent. Figure 13 shows the Wigner function for a bias
voltage of 0.13 V, which corresponds to the peak of the
resonant-tunneling current. The negative peak indicates
that strong quantum-interference effects are present. In
contrast, the Wigner function for 0.24 V, at the minimum
valley current, is quite similar to the equilibrium case.

B. Large-signal transient response

As discussed in Sec. I1.D, a principal reason for adopt-
ing a kinetic-level model is the desire to evaluate the time
evolution of an irreversible system. Again, this has been
demonstrated using open-system Wigner-function models
(Ravaioli et al, 1985; Frensley, 1986, 1987a; Kluksdahl
et al., 1988). As an example, let us consider abruptly
changing the bias voltage on the model RTD. Then the
Wigner function f will initially equal the steady-state
value at the first bias voltage. After the voltage is
changed, f will evolve and approach the steady-state
value at the new bias voltage. This time evolution may
be evaluated by integrating Eq. (4.22), now regarding the
potential as a time-dependent quantity. The integration
with respect to ¢ is readily done by discretizing f in units
A,. For purely numerical considerations of stability (see
Frensley, 1987a), an effective way to implement the time
integration is using the *‘fully implicit” or *“backward
Euler™ approach, which involves repeatedly solving

[fe+A)—f(D)/A,=(LV7iR)f(t +A)+b, (5.2)

to advance the solution for f (t) forward in time. This is
equivalent to expanding the exponential of the Liouville
operator in a product expansion,

exp( —iLt /W)= (1+iL't /nfi)"" (5.3)

Note that, because £L'® is not Hermitian, exp( ~i.L'*"t)
is not unitary. It is thus not necessary to use the
unitarity-preserving Cayley (or Crank-Nicholson) form,

1—iHt/2n
1 +iHt/2n

—tHr

’

which is preferred for the integration of Schrodinger’s
equation. The fully implicit scheme is a bit simpler to
implement (and to explain) than the Cayley scheme, but
the latter will generally be more accurate (see Jensen and
Buot, 1989ai and probably should be preferred.

The transient-response calculation was carried out (us-
ing the fully implicit scheme) for the particularly interest-
ing case in which the RTD is suddenly switched across
the negative-resistance region. The spatially averaged
current density (which would equal the current induced
in the external circuit, apart from parasitic effects) is
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FIG. 15. Results of a calculation of the transient response of
the resonant-tunneling diode. For ¢ <0 the device was in steady
state at ¥ =0.13 V, the peak of the J(V) curve of Fig. 11. At
t =0 the voltage was switched to ¥ =0.24 V, the bottom of the
valley. The conduction current density averaged over the de-
vice {(which equals the current induced in the external circuit) is
plotted as a function of . The current initially increases and
then declines with some superimposed oscillations toward the
new steady state. Parasitic effects are neglected.

plotted in Fig. 15. The current initially rises in response
to the increased field and then decreases toward its
steady-state value with some superimposed oscillations.
More insight can be gained into the transient process by
plotting the current density as a function of both time
and position within the device as in Fig. 16. There is an
initial peak within the quantum well, which reflects the
shifting electron distribution in response to the increased
field. The current density in the downstream part of the
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FIG. 16. The same transient-response calculation as that shown
in Fig. 15, but here the current density is shown as a function of
position g within the device.
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device then declines fairly monotonically, presumably
reflecting a simple single-barrier tunneling process which
empties the quantum well. On the upstream side of the
structure the current transient is much more oscillatory.
The reason for this is presumably the change in reflection
coefficient caused by the shift in the potential and the re-
sulting transient changes in the standing-wave patterns in
this region. The most significant result of the calcula-
tion, however, is the demonstration of a stable approach
to steady state.

C. Small-signal ac response

Another aspect of the behavior of electronic devices
which is of much interest to circuit designers is the
small-signal ac response of the device. This is the
response of the device to a small sinusoidal voltage im-
posed upon a generally much larger dc bias voltage.
That is, one seeks to evaluate the effect of a small pertur-
bation on a far-from-equilibrium steady state. This is a
rather different problem from that treated by the linear-
response theory of statistical physics (Kubo, 1957), which
seeks to evaluate the effect of small perturbations on an
equilibrium state. A perturbation expansion of the
present kinetic theory may be readily obtained to evalu-
ate the small-signal ac response of our model RTD
(Frensley, 1987b, 1988a; Mains and Haddad, 1988b). Let
us assume that the potential of the system varies as

v(x,0=vo(x)+ 1A[v,(x)e“"+c.c. ], (5.4)

where c.c. denotes the complex conjugate, v,(x) is the dc
potential including the heterostructure and the large bias
voltage, v, (x) is the potential due to the small ac voltage,
and A is a perturbation parameter introduced solely to
keep track of the order of the perturbation (and is ulti-
mately set equal to unity). We should expect that the
current induced in the external circuit can be expanded
as

HO=1y(V)+iA[p(@)V ' +c.c. ]

+ 1A%, (@)D + 10 a,, () V2t +c.c.]

rect

+ (5.5)

where Vy=[vy(1)—vy(0}]/e and V ,=[v (I)—v,(0)]/e
are the total voltages applied, e being the charge of the
electron. The coefficients of Eq. (5.5) describe different
aspects of the ac 1response: p is the linear admittance, the
amount of rectification of the sinusoidal wave form is
given by a,.,, and the amount of second-harmonic gen-
eration is given by a,,. Note that at ©=0 these
coefficients are just the derivatives of the I(V) curve:
y(0)=dI/dV and a,,(0)=a,,(0)=d/dV?. The
coefficients of Eq. (5.5) at an arbitrary frequency may be
obtained from the corresponding components of the
Wigner function. To do this we write the Liouville
operator as
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LY=L+ LMV e +c.c.) . (5.6)

The Wigner function can be expanded (to second order in
A) as

f(t)=f(d°’+%k(f“")e"“'+c.c. )+}\2fln:cll
FINf Pt e+ - (5.7)

Inserting Eqs. (5.6) and (5.7) into the Liouville equation
and collecting terms of equal frequency and order in A
leads to these equations:

ifi

W= — ———qy fide) (5.8)
S e
f("c”="?_zsze(‘me“"’.), (5.9)
(Zw)___l ifi {ew)

Fo= =S g Yl (5.10)

where f'9 is obtained from Eq. (4.27). (The denomina-
tors of this perturbation series look a bit unfamiliar, with
expressions of the form ., +ifiw rather than L —ifiw.
The reason for this is that we have mixed the quantum-
mechanical convention for the time dependence, e milish
with the convention used in electronics, e‘“. While a
consistently quantum-mechanical notation would pro-
duce more conventional expressions, it would also pro-
duce a great deal of confusion when we examine the
imaginary parts of the response to determine whether
they resemble capacitances or inductances.) The super-
operator resolvent expressions in Egs. (5.8)-(5.10) are
readily evaluated with the same algorithms used to solve
the steady-state and transient problems.

Evaluating the expectation value of the current density
J for any of the terms of f(t) gives the conduction
current as a function of position g:

(0 = [ dE P i
(TN q) _xzﬁmf (g,p) - (5.1

The current induced in the external circuit by this con-
duction current within the device is obtained by invoking
the Shockley-Ramo theorem (Shockley, 1938; Ramo,
1939). We shall approximate the properties of the doped
contacting layers as ideally metallic conductors bounded
by interfaces to the higher-potential barrier layers at g,
and gq,. The Shockley-Ramo theorem then takes the
form

1=

A 9,
dq(Jf'" Mg, (5.12)
q9,—q fq’ 9

where A is the area of the device. The coefficients of the
expansion of I (1) (5.5) are thus given by

Io(V)=I[f'%], (5.13)
y()=I{f'“1/V,, (5.14)
Arel@)=LI[f1/VE (5.15)
ay,l)=1I[f /v . (5.16)
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It should be emphasized that these expressions represent
only the conduction current component; the displace-
ment current must be added to them to obtain a complete
description of the behavior of the device.

The linear admittance y of the present RTD model was
evaluated using Eqs. (5.8) and (5.14) at a bias of 0.17 V (in
the middle of the negative-resistance region), as a func-
tion of frequency over the GHz and THz regions. The
results are plotted in Fig. 17. The conductance Re(y) is
negative at lower frequencies, as we would expect from
the dc results. This negative conductance *“rolls off* and
becomes positive at about 6 THz, which is therefore the
maximum frequency of oscillation of the intrinsic device
{not including parasitic effects). The susceptance Im{y) is
positive and proportional to w at lower frequencies,
which is the behavior of a capacitance. Recall, however,
that the displacement current that flows through the
geometrical device capacitance is not included in this cal-
culation. The result that Im(y)>0 is somewhat surpris-
ing, since the most obvious reactive effect in electron
transport at high frequencies is the electron inertia,
which leads to Im[y (w)] resembling that of an inductor
with Im(y) negative (Champlin, Armstrong, and Gunder-
son, 1964). The initial calculations of the admittance by
the present author (Frensley, 1987b, 1988a) gave negative
Im(y) due to a programming error, and the electron-
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FIG. 17. Small-signal ac response of the resonant-tunneling
diode for a dc bias of 0.17 V, which places the device in the
middle of the negative-resistance region. The device conduc-
tance (the real part of the admittance, solid line) is negative at
lower frequencies, with a value equal to that expected from the
derivative of the dc J (V) curve. The negative conductance de-
creases in magnitude and Lecomes positive at a few THz. The
complex behavior at higher frequencies is an indication that op-
tical transitions are becoming important. The susceptance
(imaginary part of the admittance, dashed curve) has the same
sign as a capacitance and is due to the effects of electron storage
in the quantum well. These quantities reflect only the conduc-
tton current and do not include the displacement current
through the parasitic capacitance of a real device. This dis-
placement current would prevent observation of the higher-
frequency effects in a realistic experimental situation.
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inertia explanation was proposed in those papers. Dur-
ing the preparation of the present work the error was
discovered, and correcting it brings the results into agree-
ment with those obtained by Mains and Haddad (1988b),
who obtained positive Im(y). Thus the electron inertia
does not explain the behavior of Im[y (w)}], and an alier-
native explanation must be sought. A key piece of evi-
dence is provided by evaluating the admittance of struc-
tures with either one energy barrier or none, in addition
to the double-barrier structure. These structures do
indeed show negative (inductive) Im(y), presumably due
to electron inertia. The capacitive Im(y) is thus uniquely
associated with the double-barrier structure and there-
fore must reflect the confinement of electrons in the
quantum well. The idea that electron storage in a quan-
tum well could be represented as a capacitance was pro-
posed by Luryi (1985), but he identified this capacitance
with the geometrical capacitance of the device, through
which the displacement current flows. The storage ca-
pacitance inferred from the present calculation is 1-2 or-
ders of magnitude smaller than the geometrical capaci-
tance.

The rectification and second-harmonic generation
coefficients a.., and a,,, were evaluated using Eqgs. (5.9),
(5.10), (5.15), and (5.16) at a bias of 0.13 V {the top of the
current peak). The moduli of these quantities are shown
in Fig. 18. While a,, decreases at higher frequencies.
a... shows a resonant enhancement over the frequency
range of 1 to 8 THz. This is quite interesting, because
a,.. was measured by Sollner er al. (1983) at a frequency
of 2.5 THz. The experimental data show that for most
bias voltages |a,.. (2.5 TH2)| exceeds the dc dI/dV*',
indicating that the magnitude of g, must increase in
this frequency range. On the other hand. the rectification
process in the RTD has been recently analyzed by
Wingreen (1990), using a transmission-coefficient ap-
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FIG. 18. Nonlinear response of the resonant-tunneling diode at
a dc bias of 0.13 V, at the peak of the J{V) curve. The
rectification coefficient (solid line) shows a resonant enhance-
ment near 6 THz.
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proach. He found no evidence of enhancement, only a
decrease in a,. as the frequency is raised. One
difference between Wingreen’s calculation and that based
upon Eq. (5.9) is that the former includes the effects of
only one resonant level, whereas the latter includes all
such levels. This suggests that the enhancement of a,
might involve transitions between resonant levels, though
the frequency of the transition between the lowest two
levels in the present example is 60 THz, which argues
against this notion. This illustrates one of the problems
with a kinetic approach that incorporates all physical
processes: Such an approach provides little guidance
when one desires to identify that process which is the
cause of some particular effect.

It is particularly interesting to look at (Jf'“') as a
function of both frequency and position g. This is plotted
in Fig. 19. At frequencies below a few THz the current is
independent of position, as one would expect in an elec-
tron device. As the frequency increases above this value,
the ac current density becomes strongly nonuniform, in-
dicating that the response of the current to the applied
potential is strongly nonlocal. A particularly prominent
peak occure in Re[y(q)] at a frequency of 50 THz and
centered within the quantum well. The positive value of
the conductance in this peak indicates that the in-phase
current density is locally large, so this part of the device
15 absorbing power from the ac electric field. The obvi-
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F1G. 19. Linear component of the ac current density (divided
by the applied ac voltage and thus expressed as an admittance)
as a function of frequency and position. At lower frequencies
the current density is spatially uniform, but strong nonlocal
effects develop as the frequency is increased. This is a charac-
teristic of the transition from electronic to optical behavior.
The prominent peak in Rely) centered in the quantum well at
50 THz 1s due to quantum transitions between the two lowest
resonant levels.
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ous explanation for this absorption is that the peak
reflects quantum transitions between the two lowest reso-
nances in the well. A transmission-coefficient calculation
indicates that, for the present example, these states are
separated in energy by 0.248 eV, for which the corre-
sponding photon frequency i1s 60 THz. The small
discrepancy in predicted frequencies is presumably attri-
butable to the effect of the Markov assumption in the ki-
netic theory, as in the case of the J (V) curves. Figure 19
Is interesting because it gives us a view of the transition
of a single system from the domain of electronics to that
of optics.

In addition to these effects, the irreversible open-
system models have been applied to investigations of the
effects of phonon scattering, as described in Appendix F,
and the self-consistent potential in the RTD, as described
in Appendix A. The various applications of open-system
kinetic theory to RTD’s clearly demonstrate the value of
this approach, in spite of the existence of several un-
resolved mathematical issues which will be explored in
the next section.

VI. PROPERTIES OF THE IRREVERSIBLE MODEL

A. Mathematical properties

Having demonstrated the computational utility of the
time-irreversible open-system model defined by Eqgs. (4.4
and (4.7), let us examine its properties in more detal.
First, note that the Wigner function derived from a
steady-state (4.27) or transient solution of Eq. 4.4 1
purely real valued, because both the Liouville equation
(4.4) and the boundary conditions (4.7} are purely real.
This implies that the corresponding density matrix s
Hermitian, as required.

Now consider the domain upon which the model 1s
defined, as contrasted to the domain of a spatially closed
system. This is tHustrated in Fig. 20. For a closed sys-
tem of length [/ (bounded by an infinite potential well), the
state of the system would be described by a density ma-
trix defined within the square formed by the long-dashed
lines. The coordinate rotation from the Wigner-Weyl
transformation (4.1) implies that the domain of the
Wigner function maps onto the rotated square
(*diamond-shaped domain™) shown by the short-dashed
lines in the x,x’ plane. The density operator is, in cffect,
a spatial correlation function. The partitioning of a one-
dimensional “universe” into a finite system bounded by
two semi-infinite reservoirs partitions the domain of the
density operator into regions corresponding to various
system-systcm, systcm-rescrvoir, and reservolir-reservorr
correlations. The domain of the Wigner function does
not coincide with that of the system-system density
operator, and the Wigner function domain extends into
regions that describe system-reservoir correlations. This
may well be a necessary characteristic of any useful
open-system model.
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FIG. 20. Domain of the density matrix and the Wigner distri-
bution function. The arguments of the density matrix are x and
x'. The Wigner function is obtained by transforming to the
coordinates q and r, followed by a Fourier transform with
respect to r. The long-dashed lines indicate the system-
reservoir boundaries, and they partition the domain into regions
corresponding to the various system-system, system-reservoir,
and reservoir-reservoir correlations. The short-dashed lines
represent the boundaries of the domain of the Wigner-
distribution-function model. Note that the Wigner function in-
cludes contributions from regions that represent correlations
with the reservoirs.

It must be admitted that the shape of the Wigner-
function domain as shown in Fig. 20 introduces certain
mathematical difficulties. These arise when one requires
the density operator given the Wigner function and vice
versa. First let us note that the Wigner-Weyl transfor-
mation of the density operator into the Wigner function
1$ a unitary superoperator in the sense of Eq. (2.6) if the
domain [in (x,x") and (q,p)] is unbounded. This follows
from the equivalence of the inner products (2.4) and
(4.23). If the domains in (x,x’) and (g, r) are bounded and
do not coincide, the Wigner-Weyl transformation cannot
be unitary (and is in fact noninvertible), because some of
the information contained in either the Wigner function
or the density operator will be lost. This is precisely the
situation illustrated in Fig. 20. An additional problem
arises in the discrete model which involves the form of
the discrete mesh in the two coordinate systems. This is
illustrated in Fig. 21, which shows a discrete mesh in
(x,x') and superimposed upon it the rectangular mesh in
{(g,r) employed in Eq. (4.13). In addition to the loss of in-
formation from the corner triangles described above,
there is also a loss of information because the (g,7) mesh
points are only half as dense as the (x,x’) mesh points.
The relation between these two meshes can be summa-
rized as A, =A, and A,=2A,. [This mesh is implicitly
used in Eq. (4.14).] If the (g,r) mesh were set up with
A,=A, and A, =4,, half of the (g,r) mesh points would
not coincide with the (x,x’) points. A way to incorpo-
rate all the (x,x’) points might be to use a staggered
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FIG. 21. INustration of the inconsistency between discretiza-
tions for the density operator and the Wigner function. The
squares represent the elements of a bounded, discrete density
operator. To transform this into a Wigner function only the
filled squares may be employed because they form a discrete,
rectangular mesh in the (g,r) space. This not only leaves the
elements in the corner triangles of the density operator unused,
but employs only one-half of the remaining elements. As a re-
sult, the transformation from discrete density operator to
discrete Wigner function is not unitary.

mesh in (g,r) with A, =31A, and A, =2A,. Mains and
Haddad (1989) have investigated such a scheme.

In summary, one cannot rigorously derive a Wigner
function from a density operator and vice versa on a
finite, and particularly on a discrete, domain. As a result,
any discussions that rely upon the equivalence between
the Wigner function and the density operator in such a
case must be regarded as plausibility arguments rather
than derivations. A more practical consequence is that
we have no adequate way to evaluate the operator prop-
erties, such as the eigenvalue spectrum or the inverse, of
a Wigner function defined upon a bounded domain.

The shape of the natural domain for the Wigner func-
tion is a consequence of its relationship with the super-
operators generated by x and p, =(#/i)d/8x. In terms
of the variables g, p, and r, these superoperators have
particularly simple forms:

X =9, (6.1)
Xi_y=r 1%5%, 6.2)
. A0
Py=P=T3, (6.3)
fi d
= —— 6.4)
=T 3 (

The Wigner function is thus expressed in terms of the ei-
genvalues of X, , and P, and the fact that these su-
peroperators commute {Eq. (2.13)] is what allows us to
define the Wigner function in the first place (because its

R




William R. Frensley: Boundary conditions for open quantum systems 769

arguments are the eigenvalues of these superoperators).
This observation is the point from which to begin to ad-
dress one of the obvious concerns connected with any
phase-space formulation of a quantum problem: the pos-
sibility of a violation of the uncertainty principle. Be-
cause ¢ and p are eigenvalues of commuting superopera-
tors, specifying boundary values localized in the (g,p)
plane does not necessarily lead to a violation of the un-
certainty principle.

How, then, does the uncertainty principle affect the
Wigner function? The usual characteristic of a distribu-
tion functon that violates the uncertainty principle is that
it contains some states which have negative occupation
probabilities. That is, the corresponding density matrix
will have at least some negative eigenvalues. Consider,
for example, a distribution function f(q,p)=m8(q)d(p),
which clearly violates the uncertainty principle. The cor-
responding density matrix is p(x,x")=8(x +x'). If we
operate on any antisymmetric state ¥, (x)=—¢,(—x)
with this density matrix, we get —,(x), so —1 is cer-
tainly an eigenvalue of p, which is thus not a valid densi-
ty matrix. [Note, however, that examples of distribution
functions that satisfy the uncertainty principle and are
still not valid Wigner functions have been found (Nar-
cowich and O'Connell, 1986)].

Therefore, to represent an acceptable mixed state, the
density operator p must be a positive operator. (Recall
that we have modified the normalization condition so
that Trp=1 is no longer a requirement.) The positivity
of p and thus of f as an operator does not imply that
Sftg,p)>0. Tt is well known that the Wigner function
can take negative values (Wigner, 1971), and that such

]
(g.p)=
fta.p (7h)?

where u(q,p) is the Wigner-Weyl transform of 4. It ap-
pears that the obvious ways to restrict the limits of in-
tegration in Eq. (6.9) to a finite domain lead to expres-
sions that violate at least one of the semi-group axioms
which define operator multiplication. If an expression
that did satisfy those axioms could be derived from Eq.
(6.9), we would obtain a useful definition of positivity in
the open-system case.

Now, does the procedure of directly solving for the
Wigner function under inhomogeneous boundary condi-
tions lead to a positive £'%' operator? In the absence of a
rigorous definition of positivity for a Wigner function on
a finite domain, there is, of course, no mathematical
demonstration that guarantees such positivity. It may
well be possible to define a case of the present open-
system model which does violate the uncertainty princi-
ple. However, let us qualitatively explore some of the
considerations that bear upon this question. First, note
that the positivity of £'%’ necessarily involves the posi-
tivity of the boundary values, because f'%' is a linear
function of the boundary values as shown by Eqs. (4.27).
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negative values are related to quantum interference, as
we have seen. One can test the positivity of p using two
different conditions (Narcowich and O’Connell, 1986).
The most commonly invoked approach is to demand that

(Ylplvr =0, (6.5)

for all states . The expectation value can be rewritten
as an operator inner product {Eq. (2.4)] by defining the
projection operator P, =[¢) (¢l:

(Plplg) =T Pp)=(P,llp) . (6.6)

Then the condition (6.5) can be transformed into the
Wigner-Weyl representation using Eq. (4.23) to obtain
the condition

fd‘dep flg,p)fulq,p)20, .7)

(where f, is the Wigner function for the pure state ¢ for
all Y. The application of this condition to the distribu-
tion functions obtained from the open-system modci s
hindered by the preblems of incompaubility of the finite
domains discussed above. In the second test for positivi-
ty of the density operator one demands that it be possible
to factor p into

p=A‘4, (6.8)

where A is some operator {Narcowich and O'Connell,
1986). Applying this condition to the corresponding dis-
tribution function requires the expression for the opera-
tor product in terms of Wigner functions (Hillery,
O’Connell, Scully, and Wigner, 1984). Condition 16.8)
then becomes (Narcowich and O’Connell, 1986

-—— [dg' [dp' [dg" [dp a*iq+q'.p+palq+q”.p+q redar’ 7 A 16.9)

[

We can speculate that at least in a semiclassical situation
%" should be a positive operator if fiih,, and
f{,’;ﬁ::"&,) are positive. To establish the plausibility of the
idea, let us consider the classical case. The properties of
the classical Liouville equation (4.6) employing the open-
system boundary conditions (4.7) are essentially the same
as those of the quantum case with respect to the eigenval-
ue spectrum of the Liouville operator and the stability of
the resulting solutions. If we assume that there is no
damping within the system, then the classical Liouville
theorem holds within the system, and the distribution
function f is constant along the classical trajectories
(which are the characteristic curves of the Liouville equa-
tion). Any trajectory passing through a boundary must
in fact pass through a boundary twice, once as an incom-
ing particle and once as an outgoing particle (otherwise a
density would have to build up in violation of the Liou-
ville theorem). Such trajectories cover the phase space,
except for those regions which correspond to any bound
orbits. Because f, is constant along a trajectory and its
value is fixed by the boundary condition, f, must be
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non-negative if, and only if, the boundary values are
non-negative. The values of f, in regions corresponding
to bound states will be non-negative if and only if the ini-
tial values of f; (with respect to time) are non-negative.

How might these considerations be modified in a
quantum-mechanical system? Or, in other words, how
can one get into trouble applying the open-system bound-
ary conditions to a quantum system? The only obvious
case would be an attempt to apply the boundary condi-
tions (4.7) in a region where there were strong interfer-
ence effects, such as standing waves. We can easily im-
agine that, for example, forcing f to have a large density
at a boundary point where a node in the density should
occur would introduce spurious states with negative oc-
cupation. To avoid such situations, one should apply Eq.
(4.7) only in reasonably classical regions of a system. In
practice, this means at a distance of at least a few times
the thermal coherence length A, [Eq. (3.3)] away from
any abrupt feature of the potential (where the standing
waves are smeared out by thermal incoherence). At
lower temperatures, one would use the reciprocal of the
Fermi wave vector, rather than A ;.

Now let us examine in more detail the mathematical
structure of the model that results from the time-
irreversible boundary conditions. The discrete expres-
sion for the drift term T of the Liouville equation (4.19)
has the form of a master operator (Bedeaux, Lakatos-
Lindenberg, and Shuler, 1971). Such an operator, when
applied to a distribution function, has the effect of re-
moving some fraction of the density in each possible state
and redistributing that fraction among the other possible
states. For a finite, discrete model the properties of the
matrix M representing a master operator are

<
m, <0,

m,]ZO for i#j , (6.10)

>m,<0.

In the last condition the column sum is actually equal to
zero except for those states j which can lose density to an
external reservoir, as is the case for the open-system
model on the outfiowing boundaries. All the eigenvalues
of a matrix satisfying the conditions (6.10) will have non-
positive real parts (Oppenheim, Shuler, and Weiss, 1977,
Chap. 3). This may be readily demonstrated by appeal-
ing to Gerschgorin’s theorem (Wilkinson, 1965), which
states that every eigenvalue of a matrix A lies in at least
one of the circular discs (in the complex plane) with
centers at a,, and radii 3, Yy ia,-/ I. To apply this theorem
to the master operator M, let us take the matrix 4 to be
the transpose of M, 4 =M, to change the column sum
condition into a row sum. The eigenvalues of M and A4
are identical. Then because a;; is negative for i = and
positive for i # j and is real for all i and j, we find that the
real part of each eigenvalue A, must satisfy

a,— ¥ a;<Rer, <a,;+ ¥ a;= Za'f <0,
J

]1, ,r;

(6.11)
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for some i. Thus ReA, <0 for all k. The fact that the
column sums in T for the outflow boundaries are less
than zero makes T nonsingular. (In a master operator
describing a closed system, all the column sums would be
zero, which implie: that the determinant would be zero,
so there must be an eigenvalue equal to zero.)

The fact that the upwind discretization generates a
master operator is the fundamental reason for its success,
both in the present context and in the more traditional
applications of transport theory (Roache, 1976, pp. 4-5;
Duderstadt and Martin, 1979). Now, in the quantum
case, the complete Liouville operator £ (in the Wigner-
Weyl representation) cannot be a master operator, be-
cause we know that the Wigner distribution can have
negative values, which a master operator would not per-
mit. As we have noted, the quantum-interference phe-
nomena enter the Wigner distribution via the potential
superoperator V. The fundamental result of the present
work is the demonstration in Fig. 9 and Egs. (4.24) and
{4.25) that the Markovian model which follows from the
irreversible boundary conditions (4.7) introduces the
necessary stability properties in the quantum case as well
as in the much more obvious classical case.

It is interesting to consider the form that 7T assumes
upon transformation back to a real-space density-matrix
representation. For this purpose let us assume that we
have defined the Wigner function on a discrete basis with
respect to ¢ and on a continuum basis with respect to p.
Then T is given by

flg+A,,p)—flg,p) for p<0
(TS Ng,p)=——L—x o ,
mb,  |f(@.p)=f(g—4,p) for p>0

(6.12)

To transform this back to the density-matrix representa-
tion, we must evaluate

=" d ipr/h
(Tplgr=[ = SZe?/"(T/)gp) , (6.13)
with Eq. (4.3) substituted for f. [To simplify the resu!t-
ing expressions, we shall express the arguments of p in
terms of g and r of Eq. (4.1) and Fig. 20.] Evaluation of
Eq. (6.13) requires the formula

1

© dp  iprihogy O 1_r
i 21rpr 2

0 Zﬂ%pe or 3r)

(6.14)

and its complex conjugate. Letting A, approach zero we
find

(TpXgq,r)

_# 3 |.aplg,n) , 4 < dr' dplg,r’)
- 22 | len) Sy e i Fplar)
m dg 207 dewr—r dg?

{6.15)

The second term in Eq. (6.15) contributes an anti-
Hermitian component to .L. The appearance of 32/3q*
in this term is reminiscent of the ‘“‘numerical viscosity”
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that is a property of some finite-difference formulations
of transport equations (Press, Flannery, Teukolsky, and
Vetterling, 1986). The principal-value integral in Eq.
(6.15) has the desired effect of distinguishing the sign of
the momentum of the states present in p. To see this,
suppose that there is a term |k ) (k| =e*" contained in p.
One could evaluate its contribution to the integral in
{6.15) by contour integration, closing the contour in the
upper or lower half-plane if k were positive or negative,
respectively. But then the sign of the contribution of the
pole on the real axis would change as the sign of k
changes. The anti-Hermitian term would vanish, except
possibly for a surface contribution, in the limit A, —0.

This description of open systems in terms of p(x,x’)
has not yet been developed into a workable model. How-
ever, there is a strong motivation for doing so in the con-
text of semiconductor heterostructures. In such a struc-
ture the electron energy-momenium relation can be con-
siderably more complex than a simple parabola, and it
changes from one material to another in ways that can-
not be represented by a shift in the local potential. The
simplest example of such an effect is the change in
effective mass as an electron crosses a heterojunction. As
described in Appendix E, this leads to a highly nonlocal
form for the kinetic-energy superoperator in the Wigner-
Weyl representation. More complex features of the
energy-band structure can be modeled by any of a num-
ber of localized-basis-function schemes which may re-
quires more than one basis function per lattice site. Such
schemes could easily fit into an approach expressed in
terms of p(x,x’), but it i1s not at all obvious how to in-
corporate such effects into the Wigner function in view of
the incompatible discretization requirements illustrated
in Fig. 21.

Of more general interest is the appearance of Eq. (6.14)
in the deductive chain leading to (6.15). Such a relation,
more often expressed in the form

1

|
—-=p—F ,
tic Pw imdlw)

(6.16)

is usually encountered in the analysis of irreversible
quantum phenomena. It is the mathematical expression
of the fact that a cont:nuum of states (and therefore of
frequencies) provides enough degrees of freedom that a
Poincare recurrence can be postponed indefinitely. It ap-
pears in the analysis of behavior in the time and frequen-
cy domains, and is used to express the initial conditions
that lead to irreversible behavior: no advanced waves in
electrodynamics (Bjorken and Drell, 1964), or adiabatic
switching-on in many-body theory (Kohn and Luttinger,
1957, Fetter and Walecka, 1971). In the present model
such a relation appears in the position and momentum
domains and expresses the effects of the spatial boundary
conditions.

B. Superoperator symmetry and physical observables

One of the benefits of the time-irreversible open-system
boundary conditions is that they provide an alternative
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to the use of periodic boundary conditions in the analysis
of quantum-transport phenomena. The great disadvan-
tage of periodic boundary conditions is that they do not
address the case in which the potential varics
significantly across a system. That is, their use restricts
one to the study of low-field phenomena. It has been
pointed out (Yennie, 1987, footnote 11 acknowledging
private discussion with M. Weinstein) that quasiperiodic
boundary conditions (i.e., periodic within a phase factor
which can be removed by a gauge transformation) are
necessary if the momentum operator is to be Hermitian
on a finite domain. The present work demonstrates that
far-from-equilibrium phenomena can be modeled by em-
ploying a non-Hermitian momentum superoperator.

The connection between symmetries and conservation
laws is undoubtedly one of the most fundamental results
of the quantum theory. However, if one is faced with the
task of describing the behavior of a nonconservative sys-
tem, the inability to modify or violate the conservation
laws becomes an obstacle to defining a realistic model,
rather than a benefit. The problem is that one wants a
model whose solutions stably approach a steady state,
which requires complex-valued eigenvalues, but the ex-
pectation values of physical observables should be real.
The present analysis of open-system models demonstrates
that these conflicting requirements can be accommodated
at the Kinetic level, because the roles of generating the
dynamical evolution and evaluating observables are filled
by different superoperators. If we reexamine the models
described above, we find that the dynamic effects such as
generating time evolution or moving density by current
flow are described by commutator superoperators, and
these are the superoperators that become non-Hermitian
when one incorporates interactions with the outside
world. The measurement of the expectation values of ob-
servables is done by anticommutator superoperators, and
these, with proper attention to the definition of the
domain and boundary conditions, remain Hermitian.
This separation of function has been noted by Prigogine
(1980) in the superoperators generated by the Hamiltoni-
an. In the open-system model the momentum super-
operators appear in similar roles, and this demonstrates
the existence of a more general underlying structure in
the kinetic theory.

Let us consider the superoperators . ,, and /, , de-
rived from the momentum operator. We have already
observed that the kinetic-energy term of the Liouville
equation (2.3) can be written as P, /P, . ,/m (3.6). £, ,,
will be Hermitian if we restrict our attention to density
matrices whose off-diagonal elements approach zero for
large x —x' (so that integration by parts may be per-
formed without a surface contribution in an integral over
r=x —x'). Such density matrices describe normal sys-
tems (as opposed to superconducting ones, or systems
with some other long-range coherent effect) at nonzero
temperature. In such normal cases P, ,, produces the
real-valued factor p in the drift term (4.9). P, _, generates
the gradient in T and is thus the superoperator that is
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rendered non-Hermitian by the boundary conditions
4.7).
We can also see the dichotomy of function between

P, ., and P, _, by examining the elementary quantum
continuity equation, which is conventionally written

9 . IV

— =—~—(y*Jy), 6.17

atll/ 1 ax(tl/ ¥) { )
where

(PI)=—— |g* af —'Lw (6.18)

By now we should readily recognize the presence of 7,
in the current-density operator J. In fact, the current
density is much more naturally regarded as a superopera-
tor,

=P\ /m (6.19)

and we see P, ,, in the role of measuring an observable.

At the kinetic level the continuity equation is linear in

terms of the density matrix p and is simply the Liouville
equation evaluated along the diagonal x =x".

The continuity equation is of course just the zeroth-

J

) 1 . 1 ad
‘ae —ﬁ P(—)PH'V*JV(—)

The manipulations required to generate the moment
equations may be considerably simplified by using some
superoperator relations to evaluate the effect of 7 ., on
the potential and its derivatives. To derive the necessary
expressions, let us consider an operator G =g(x)8(x
—x’), which is diagonal in position space. The commu-
tators of the derived superoperators ¢,_, and 9, , with
P, ., are then

[(P1¢/‘gl‘i]_
[([)1 H-gl—)]:_'

g, ,
¥F Yel
T'ﬁg(—)v

(6.22)

where &' indicates the superoperator derived from the
spatial derivative g /3x. Note that (§,_p), =0 for any
such operator, and (9, p),=g(q){p), for any opera-
tor p. Now we may readily derive the moment equations.
The zeroth moment is thus

pd, _ 3dp),
a aqg

(6.23)

which is a familiar form of the continuity equation. If a
collision term is included in the kinetic equation, it must
have a form such that {(€p), =0 if the theory is to satis-
fy the continuity equation. This means that
C(x,,x;x,,x5)=0 in the density-matrix representation
[a condition satisfied by the Fokker-Planck operator
(3.8 or

}=6(q,

Clq,.p1:9:.P2 —g)c(p.py.qy)
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order moment equation of the Liouville equation. The
higher-order moments of the Liouville equation may be
obtained by operating on the equation with 7, (or &)
and evaluating the resulting expression along the diago-
nal. Let us denote the eva'uation " .n operator kernel
for x =x'=gq by angular brackets, {p),=p(g,q). This i
equivalent to the phase-space procedure of multi;iying
by some power of p and then integrating over all p, so
that the corresponding expression for the Wigner func-
tion is

<(Pf'+)P> f 21rﬁp

The moment equations we shall derive are a special case
of those that have been discussed by a number of authors
(Frolich, 1967; Putterman, 1974; lafrate, Grubin, and
Ferry, 1981; Kreuzer, 1981}, because we shall not consid-
er two-body or dissipative interactions. The objective is
to demonstrate the role of the anticommutator super-
operators in this procedure, a point that has not been
previously articulated.

As a starting point from which to derive the moment
equations, let us rewrite the Liouville equation in super-
operator notation, making use of the factorization (3.6):

"flq,p) . (6.20)

(6.21)

!
with fc(p,,pz,q)dp,=0, for the Wigner function (see

Appendix F).
The first moment equation is readily found to be
3l dpl, 3 v
—=——(lp),— — , (6.24)
m— 30 1102~ 50 (0,

where [1=P?,,/m is the momentum flux density. [For
two- or three-dimensional models, the direct product of
the two vectors 7, is taken, and Il will be a tensor
(Landau and Lifshitz, 1959).] Equation (6.24) is identical
to its classical counterpart. If we integrate it with
respect to g [assuming that the domain is rectangular in
the (g,r) coordinates and extends over 0 <q <], we ob-
tain a generalization of Ehrenfest’s theorem to the case of
an open system:

a ! . Iav
mEfo(d‘p)qdq——foa—q(p>qdq+<np)o_(np)l )
(6.25)

The last two terms represent the effect of opening the sys-
tem: A flux of momentum density through the boun-
daries of the system will affect the current flow within the
system. To make contact with hydrodynamics, we would
follow the standard kinet.-theory manipulations
(Kreuzer, 1981, Chap. 8) and define a kinetic pressure
tensor

P=(P,— (P, p)?/m
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and separate Il into
(Tp), ={Pp), +{(Prs p)2/m .

Continuing with the above procedure, we may derive a
second moment equation by operating on Eq. (6.21) with
P2, ,/2m to obtain

# P
a< H’p) _ 8< (+) (6.26)
q

Ll

Quantum corrections in the form of terms containing
#°3%v /8¢° will begin to appear in the third and higher
moment equations, as one would expect from the
Wigner-Moyal expansion (4.12). However, the second
moment equation presents something of an ambiguity.
We might also derive it by operating on Eq. (6.21) with
the ' ,, derived from the kinetic-energy operator T.
These are not at all the same superoperators:

P? 2 2 2 2
Lo A&, & L& 1 (62
2m 8m | 3x? Oxdx’  Jx?
ﬁZ a2 aZ
< —_— e — S + .
T ., am | 3x? 3 (6.28)

Putterman (1974) displays both of these forms and
notes that both lead to the same bulk properties, thus any
physical difference must appear in a surface contribution.
It is not the purpose of the present discussion to investi-
gate these issues in detail, but only to demonstrate that
anticommutator superoperators appear naturally in any
attempt to evaluate expectation values in kinetic theory.

The same dichotomy between commutator and an-
ticommutator superoperators can be seen in the case of
the superoperators generated by the Hamiltonian H. Of
course #, _, is just the Liouville superoperator £, and we
have examined at length the need for a departure from
Hermiticity in the case of £. We have not yet encoun-
tered a need for the anticommutator %, One place it
does occur is in a generalization of the Bloch equation
{3.1) to the case of an open system. If one attempts to
compute an equilibrium density matrix as a finite seg-
ment of a much larger system by modifying the boundary
conditions on p in the Bloch equation, one quickly dis-
covers that product Hp must be symmetrized to obtain
sensible answers. Thus the Bloch equation becomes

e/ OB=— J(HpeqtpeH)V= —H (1 peq - (6.29)

If the time-reversible open-system boundary conditions
(3.4) are applied to the Bloch equation, one obtains a
quite useful method for evaluating the equilibrium densi-
ty matrix (in contrast to the disastrous effect these
boundary conditions have upon the time evolution).
Taking into account our particle-density normalization
of p, we find that the correct Bloch equation is

3peg /3B=—(H,\ \—1peq - (6.30)

with the initial condition
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Peqlg=0=8(x —x') . (6.31)

When this equation is integrated, the resulting densities
in regions of constant potential are found to be equal to
the semiclassically expected value

(V2mh) lexplBlu—v)] .

An example of an equilibrium density matrix obtained
from such a calculation is shown in Fig. 22.

Here we see that again the anticommutator super-
operator appears in the process of evaluating an observ-
able, in this case for the purpose of evaluating the energy
and thus the occupation probability of the possible states.
We would expect that, for this purpose, %, , ought to be
Hermitian. Its Hermiticity in fact depends upon the
shape of the domain when the boundary conditions (3.4)
are applied. Because % ., is an elliptic operator, it is
easy to show that it will be Hermitian when the domain
is rectangular in the (g,r) coordinates, so that the gra-
dient in (3.4) is normal to the system boundary. It is not
Hermitian when applied to a domain that is square in the
{x,x') coordinates, as in the calculation illustrated in Fig.
22. However, the departure from Hermiticity is small,

FIG. 22. Equilibrium density matrix obtained by numerically
integrating the generalized Bloch equation (6.30) subject to the
reversible open-system boundary conditions (3.4). The poten-
tial, displayed above, represents the sort of features that are
now realizable using semiconductor heterostructure technology.
The chemical potential g is indicated by the dashed line. The
calculation employ:d parameters appropriate for the
Al ,Ga, ,As system at 77 K. The three energy barriers create
two identical “‘quantum wells,” bounded by contacting layers.
The lowest energy states in these wells are pushed toward
higher energy by size quantization, which reduces the clectron
density in the wells via the Boltzmann factor. The shallow
peaks off the diagonal measure the correlation between the
phase of the electron at different positions, and indicate in the
present case that the symmetric combination of the well states
has a greater occupation factor than the antisymmetric com-
bination.
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and the results are physically quite reasonable. I have
not yet implemented a program to perform such a calcu-
lation on a rectangular domain in {g,r), but this would be
the proper way to proceed to evaluate the equilibrium
density matrix using open-system boundary conditions.

Having noted that #f ., appears in the evaluation of
the equilibrium density matrix, we can address a point
raised by Dahl (1981). It is that L, by itself, does not
define a unique eigenvalue problem in the wave-function
space of a quantum system; but together with % ., it
does define such a problem. This consideration enters
the present problem only for bound states localized
within the open system (Carruthers and Zachariasen,
1983). As noted earlier, such states would lead to a non-
trivial null space of L. The occupation of such states
would have to be determined as an initial condition, such
as an equilibrium distribution evaluated using % 4.

C. Relation to many-body theory

1 have remarked that the Markovian kinetic models
considered here are not equivalent to the usual elementa-
ry quantum-mechanical models of systems such as tun-
neling diodes. Let us now explore the differences be-
tween these two types of models by examining how they
may be viewed as different approximations to a single
many-body theory. In the approach to many-body trans-
port theory developed by Kadanoff and Baym (1962) and
by Keldysh (1964) and elaborated by Langreth (1976} and
by Mahan (1987), the description of a quantum system is
contained in a Green'’s function,

G (x,t;x e ) =i{Wx", t')Wx,0), (6.32)

where W is the field operator. The density operator p can
be obtained from

plx,x';1)=—iG “(x,t;x',1) . (6.33)

Note, however, that the Green’s function has, in general,
a second time argument ¢’, and this supplies the addition-
al degree of freedom required to describe non-Markovian
behavior. The demonstration of the correspondence be-
tween the Green’s-function formalism and more classical
transport equations proceeds applying a Wigner-Weyl-
like transformation to the time variables: Define new
variables T=1(t+t') and 7=t —t’, and then Fourier

transform G © with respect to 7:

G (x.x" )= [de'"G (x,x,\T,7) .  (6.34)

In the absence of interactions, the equations of motion
for G~ then become (Mahan, 1987), in the present nota-
tion,

in2e— 1

3T G =0,

(6.35)

(hw—H, ., )G~ =0 . (6.36)
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[If interactions are present, collision terms involving the
self-energy appear on the right-hand side of Egs. (6.35)
and (6.36).] Without interactions, Eq. (6.35) is just the
Liouville equation and (6.36) is a symmetrized
Schrédinger equation. On an unbounded domain, these
equations simply reproduce pure-state quantum mechan-
ics, as noted above, and the usual tunneling theory fol-
lows. However, if we restrict the domain so as to obtain
the open-system case, and we wish to reproduce the tun-
neling theory, we have to apply traveling-wave boundary
conditions such as those discussed in Appendix D. Such
boundary conditions necessarily introduce a dependence
upon w into Eq. (6.35). Even though we are still consid-
ering a *‘noninteracting” system (in the usual sense of no
dissipation), we see that additional w-dependent bound-
ary terms must appear in Egs. (6.35) and (6.36).

The Markovian models neglect this o dependence.
They are thus not equivalent to the tunneling or scatter-
ing theory. One can view such models either as an ap-
proximation to the tunneling theory, or alternatively, as
simply a different approximation to the underlying
many-body theory. In the latter view, the steady-state
tunneling theory is obtained by neglecting the T depen-
dence of G <, whereas the Markovian model is obtained
by neglecting the » dependence of G <. Thus we may re-
gard the Markov approximation as an a priori assump-
tion that G © is independent of . Inverting the Fourier
transform (6.34) shows that this is equivalent to assuming

G “(x,x',T,7)Zip(x,x; T)8(7) . (6.37)

This makes explicit the Markov assumption that the evo-
lution of the system does not depend upon its past histo-
ry.

To establish the plausibility of the Markov assumption
[Eq. (6.37)], let us again consider the picture of an open
system as a finite segment of length / of a much larger
“universe” of length L which is occupied by a free-
electron gas. The Green’s function for this noninteract-
ing system is

—iE; /h

Gk, T)=w,e , {6.38)

where w, is the probability that state k is occupied and
E, is the energy of that state. Now, by examining G <
within the system itself (that is, over 0<x =</ and
0 <x'=1) we cannot resolve the wave vectors of any exci-
tations to an accuracy better than 7 //. On the other
hand, because the “‘universe” is of a much larger length
L, there will actuaily be many wave-vector states within
any such interval. Thus the G © that one would observe
within the system would be an average over these states
of the form
—iEg.T/h

—_ _ L k+mst
G “thn=o= 77 dk'wye

(6.39)

Using dE /dk =#is;, where s, is the velocity of state k,
we can change the integration variable to an energy, and
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perform the integral to obtain
—iE, 1/h sin(ms, 7/1)

G “(k,T)=w,e (6.40)

ws,T/L

The bracketed factor approaches 8(r)as / —0. Now, [ is
fixed, of course, and thus the width of the “6 function” is
fixed. Moreover, the width is just the transit time across
the system at the given k. This suggests the interpreta-
tion of Eq. (6.40): Any excitation within the system will
propagate away (out of the system), and thus its temporal
correlation function will decay after a time of the order
of the transit time across the system. This demonstrates
the motivation for the Markov assumption [Eq. (6.37)]
and also its limitation. The generalization of the present
open-system model beyond the Markov approximation
has not yet been attempted and would be an obvious task
for the further development of this approach. [The ini-
tial steps in this direction might be found in the work of
Ringhofer, Ferry, and Kluksdah! (1989), who study the
formulation of nonreflecting boundary conditions for the
Wigner function. This work, however, is concerned pri-
marily with obtaining local (in space and time) approxi-
mations to the rigorously nonlocal problem.]

Vii. DESIGN AND ANALYSIS
OF DISCRETE NUMERICAL MODELS

The present work employs numerical computation and
modeling for a purpose for which it is not often em-
ployed: as the primary mode of investigating the struc-
ture and consequences of a physical theory. The more
traditional mode of investigation is, of course, to maxim-
ize the use of analytical mathematics and resort to nu-
merical techniques only when the opportunities for
analysis are exhausted, or when it is necessary to evaluate
those complicated expressions which express an analyti-
cal solution. Any particular approach to describing
physical phenomena will be successful only for some sub-
set of these phenomena and will be otherwise ineffective.
Because analytical mathematics is such a widely used
tool, its domain of success has been extensively explored;
this domain consists of those problems with sufficient
symmetry to admit analytic solutions and those problems
which can be regarded as small perturbations on analyti-
cally soluble problems. For statistical phenomena this
generally means thermal equilibrium of analytically tract-
able systems and very small departures from equilibrium.
Numerical simulation techniques that are inherently non-
perturbative are better able to address more complex
structures and/or far-from-equilibrium states. Because
the study of discrete numerical models is not widely prac-
ticed, it is worth examining the principles by which such
models may be constructed, using the present open-
system model as an example.

A common point of view is to regard discrete numeri-
cal models, such as finite-difference models for partial
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differential equations, as approximations to the “truth”
embodied in the continuum formulation of the problem
(for example, Lapidus and Pinder, 1982). Such a discrete
model can represent the continuum solution only to
within an accuracy proportional to some power of the
mesh spacing (or other appropriate measure of the
coarseness of the discrete model). This tends to lead one
to believe that the physics of the situation can be
represented only to a given order of accuracy, so that
such expressions as conservation laws (or balance equa-
tions) will be satisfied only to that order (see, for example,
Aubert, Vaissiere, and Nougier, 1984). A corollary to
this view is that higher-order approximations produce
better models. Such is often not the case (Press et al.,
1986), because higher-order approximations usually ad-
mit spurious short-wavelength modes which adversely
affect both the stability and accuracy of such models.

In fact, a better guiding principle is to seek discrete
models that are constructed so as to satisfy exactly the
physical laws that govern the behavior of the real system.
In practice, one often finds that it is possible to satisfy
only some, but not all of these laws. Which laws are ex-
actly satisfied and the order of the error terms in the
remaining laws depend upon the details of the particular
discretization scheme. This situation has led to the con-
ventional wisdom that the discretization of partial
differential equations is “an art as much as a science”
(Press et al., 1986). The science that is often lacking is a
consistent analysis of the degree to which all reasonable
discretization schemes satisfy the appropriate laws, or
preferably the identification of one scheme that exactly
satisfies the relevant laws. A particularly attractive ex-
ample of the latter situation has been given by Visscher
(1988, 1989). It is a discretization of Maxwells equations
in three dimensions, which exactly satisfies the integral
forms of the equations. This is accomplished by assign-
ing the various field quantities (charge and current densi-
ty, electric and magnetic field) appropriately to the
centers, faces, and edges of cubic finite-difference cells.
Unfortunately, we shall see that this ideal situation is not
likely to apply to kinetic open-system mcdels, and some
trade-offs must be made between the different laws that
we wish to satisfy.

A systematic way to determine the advantages and
limitations of a discrete model is first to identify the
physical laws that the model ought to satisfy and then to
evaluate the order of the errors by which the discrete
model fails to satisfy those laws. For the present open-
system model, 1 assert that there are four such laws: (1)
charge continuity, (ii) momentym balance, (1) detailed
balance of the equilibrium state, and (iv) stability of non-
equilibrium states. Energy balance is not included in this
list because it adds no physics that is not already de-
scribed by momentum balance so long as we neglect
energy-redistributing processes such as electron-electron
or electron-phonon scattering. Condition (iv) is just the
criterion that we have examined extensively, that none of
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the eigenvalues of the Liouville operator should have a
positive imaginary part.

A. Continuity equation

To begin the analysis of the irreversible open-system
model defined by Eq. (4.22), let us consider the continuity
equation (6.23). First define the discrete approximation
to the local particle density n(g)=(p), in the obvious
way, converting the integral in (6.20) to a sum:

A
njEn(qj)=;;—§fjk. (7.1)
In a discrete model the current density is most naturally
regarded as a quantity that is defined on each interval be-
tween adjacent mesh points, rather than on the mesh
points themselves. Thus the divergence of the current
density is a difference taken between adjacent intervals
and is associated with their common mesh point. Let us

N, /2 N, 2kA_j'A
2 V k= 2 =L 2 2 sin ~_Ej_q_
ot N, Fty=t fi
Now, this sum will vanish if
N 2kA_j'A
S, sin 205\, (1.5)
k=1 fi

which happens if 2N, A,A ) /fi=2m, and A, was defined
so as to satisfy this relation. This is the Fourier com-
pleteness relation mentioned earlier. Thus the discrete
model exactly satisfies the continuity equation

anj

” A I (7.6)

1—1/2) g

The only limit on the precision of this relationship is the
arithmetic roundoff error, which is generally several or-
ders of magnitude smaller than typical discretization er-
rors.

Satisfying the continuity equation via the Fourier com-
pleteness relation (7.5) relies upon the special properties
of the (artificial) Brillouin zone created by the ¢ discreti-
zation. To see this, consider k and k' such that
|k —k'| > N,. The term V., ;- should describe the effect
of a short- wavelength component but because of the am-
biguity introduced by the discretization the term is really
derived from the much-longer-wavelength component in-
dexed by (k —k’)modN,. Such an effect is called “alias-
ing” in the context of signal processing and sampling

J

aJ;

jr1n 1
L= L, -~
m 3 q”/*l I, 2

> sz

kip, <0

where

Rev Mod. Phys . Vol. 62, No. 3, July 1990

i+

vtk St PN 4

denote the current on the interval between g; and ¢ j+1 by
Ji+1,2- Then if J is to satisfy a discrete continuity equa-
tion exactly we must define J; ; , , to be

Jivin= F;- kIE<0 B':Tfjﬂ_k + k|,§>o ﬂ"—f,‘,k
(1.2)
The moment of the Liouville equation becomes
&= ——I—(J- —-J )
ot A, j+12 dj~1n
2 (7.3)

To show that the contribution from the potential opera- .
tor ¥V vanishes, let us consider the sum over k first. The
sum can be reordered and then V;; can be expanded us-
ing Eq. (4.14):

~_Uj_j') . (7.4)

f
theory (Oppenheim and Schafer, 1975, Sec. 1.7), where it
is generally regarded as undesirable, and it is mathemati-
cally the same as an “‘umklapp process” in the context of
solid-state physics. The derivation of the continuity
equation in the continuum case relies on no such proper-
ty; it follows directly from the antisymmetry of the po-
tential kernel V. In a finite model, however, we must cut
off the sequence of k’s at some value, and this will remove
some terms that would need to be present in the summa-
tions of the second term of Eq. (7.3) in order to make this
term exactly vanish by antisymmetry. Thus, if we do not
rely upon the Fourier completeness property, the best we
can hope for is to satisfy the continuity equation to
O(4,). The error can be made numerically very small by
proper choice of the limiting values of p, but, formally,
the continuity equation would not be exactly satisfied.

B. Momentum balance

One begins to encounter the limits of a simple discrete
model when the momentum balance (first moment) equa-
tion (6.24) is considered. To evaluate the rate of change
of current density, insert the discrete Liouville equation
(4.22) into the definition of J; . | , (7.2). One then obtains

Akf/k ’ (7.7

kip, >0 k
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A pi
—_ P
=312 ol (7.8)

klp, <0 m

fj+lk+ 2

kip, >0

Note that the requirements of consistency in the discretization scheme imply that I1;, which one might expect to de-
pend only upon the values of f at g;, actually depends upon the values of fat g;_,and g;,. This sort of spreading
over the domain becomes worse as higher moments are considered. It is probably more correct to regard I as a local
function of ¢ and attribute an error of O(A,) to Eq. (7.7) (because f; . , =f;«+A,3f/3q). Now consider the poten-
tial terms in Eq. (7.7). For simplicity, let us neglect the different j indices required by the form of J and simply evaluate

N, /72

S 5
cot
2 2N,A,

ZPk 2 %}‘”iu

)l !i’; % l‘ , (7.9)
2n-ﬁ2 al o

where Eq. (4.14) is again used and the sums reordered as
before. Now, in the continuum case [Eq. (6.24)] this ex-
pression reduces to (dv/dq)n. The discrete expression
(7.9) shows a functional of v (the first bracketed factor)
times n. If we consider only the first term of the sum
over j' and take cota=1/a for small a, we get
v;-1)/24,, which is just the centered-difference
approximation to dv/dq. However, the other terms of
the sum are not negligible. While 7j'/N, is small, the
higher terms just add in more remote approximations to
dv /9g. Of course, cota approaches zero much more rap-
idly than 1/a as a approaches 7/2. Thus there is a natu-
ral cutoff of these higher terms so long as j' SN, /2. This
helps to explain the significance of the limit of the j’ sum-
mation of Eq. (4.14). The value of N, /2 was originally
chosen for the upper limit of this sum on the purely
empirical basis that the results were most credible with
this value, and multiples of N, were investigated because
the summation is carried out in position space. However,
most calculations have taken N,=~N,, so th- ¢ condi-
tions are approximately equivalent. The signi/ ut result
is that the momentum balance equation (6.24) is uot
satisfied exactly by the discrete model.

The conformance of the discrete model to the momen-
tum balance equation can be significantly improved by
modifying the form of the discrete potential operator
(4.14). However, this must be approached with some
care. One could, for example, simply discretize the clas-
sical form Fd/dp, and if this is done properly, momen-
tum balance will be exactly satisfied. The problem with
this approach, of course, is that it discards any
quantum-interference effects. Mains and Haddad (1988a,
1988¢) have suggested a better approach. They recom-
mend an alternative expression for V., . which leads to
a model that exactly satisfies a dlscrete momentum bal-
ance expression. The idea is to weight the expression for

V/;k,k’ as

(W) 41—

MH _ sin[2m(k —k")/N,]
Jikek 2mk ~k')/N,

Vi - (7.10)

If we now evaluate the first moment of the potential term
we find
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Epk 2 ka K’
217'ﬁzk—1 K= g

o Efj‘,\. , (11D

k=1

exactly. The use of a weighting function in momentum
space corresponds to a convolution in position space. If
we reinterpret Eq. (7.10) as a continuum expression, a bit
of manipulation will show that (7.10) can be derived from
a ‘“‘smoothed” potential uM"(x)=fdx’w(x ~x"wix’),
where the convolution function w is just a rectangular
pulse on the interval [—Aq,Aq J- It can be written as
w(x)=9(Aq+x)6(Aq—x)/2Aq, where 6 denotes the
Heaviside step function. Qualitatively, the effect of this
scheme is to smooth out any abrupt change in the poten-
tial so that any such change is distributed over at least
two mesh intervals. However, the convolution theorem
does not hold exactly in the finite, discrete domain of the
present problem. One consequence of this is that the
discretization based upon Eq. (7.10) does not exactly
satisfy the continuity equation via the Fourier complete-
ness relation (7.5), but does so only to O(Ap ), as dis-
cussed above.

A related idea is to use some form of “data window-
ing” (Oppenheim and Schafer, 1975, Sec. 11.4) in the
evaluation of the discrete potential superoperator. This
technique is used in the Fourier analysis of finite sets of
sampled data, and in the present context would involve
multiplying the (v;, .—v; ;) factor in Eq. 4.14) by
some function of j° which decreases to zero for large j
(the window function). That is, the weighting would be
done in real space rather than in & space. The objective
of data windowing is to maximize the fidelity of the
Fourier spectra derived from a finite set of data to those
of a hypothetical infinite data set by minimizing the
spurious effects associated with cutting off the data at
some finite value. Qualitatively, this would seem to suit
the requirements of discrete models of quantum systems.
Invoking the idea that V(gq,p) encodes the quantum-
interference effects, we might also interpret a data win-
dowing procedure as an approximate description of the
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continuous loss of coherence as one examines points
separated farther apart in a dissipative system. This pro-
cedure might provide a way to interpolate between the
quantum and classical regimes, whereas the obvious
schemes for doing so with the Wigner function, expand-
ing in powers of #i, are known to fail (Heller, 1976).
These are intriguing possibilities, but the effects of data
windowing on the present sort of open-system models
have not been extensively investigated.

C. Detailed balance

The principle of detailed balance is important in
describing the properties of the equilibrium state. In the
particular case of electron devices it assures us that the
current density is zero when the applied voltage (as mea-
sured by the difference in chemical potentials) is zero.
The reader may have noticed that the concept of equilib-
rium has played no part in the development of the
present open-system model, and indeed the only place
where the chemical potential can appear is in the
boundary-condition distribution function. In this context
it may not be surprising that the discrete model does not
exactly satisfy the detailed-balance condition. This was
discovered by Jensen and Buot (1989a), who noticed that
if the steady-state J(V) curves were computed for a
structure lacking inversion symmetry (having unequal
barrier widths), a non-negligible current density was ob-
tained at zero bias. Because it is precisely detailed bal-
ance which leads us to expect zero current in equilibri-
um, the spurious equilibrium current is a measure of the
violation of this condition.

Given the observation that the discrete model does not
exactly satisfy detailed balance, we should determine
whether this is a consequence of the discretization or of
the open-system boundary conditions themselves. A sim-
ple way to do this is to compute the zero-bias current
density for an asymmetric RTD structure using varying
mesh spacings A, and A,. This was done for a structure
identical to that described in Sec. V, except that the
widths of the barriers were 3.4 and 2.3 nm. It was found
that J(0) was essentially independent of A, and
J(0)=0(4,), as illustrated in Fig. 23. Thus the viola-
tion of detailed balance is entirely a result of the discreti-
zation, and the continuum formulation will apparently
satisfy the detailed-balance principle.

Let us examine this issue in more detail. To begin, let
us see what detailed balance implies about the equilibri-
um density operator or Wigner function. Because the
processes occurring in equilibrium must be reversible, the
density operator must equal its time-reversed value
Peq=Peqs OF Peg{¥,x") must be purely real. This implies
that the equilibrium Wigner distribution must be a sym-
metric function of p. Thus an alternative measure
of the departure from detailed balance is
([feq(@:p) = feql@r—p)1)'/%. Evaluating this measure
for computed f,, with various mesh spacings leads to the
same conclusion: the irreversible model violates detailed
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SRR, |

balance to O(Aq ), and the error is independent of Ap.

The procedure of solving for the steady-state Wigner
function and then examining the scaling properties of
various features of those solutions is, in the absence of a
well-developed and thoroughly checked mathematical
analysis, the most reliable way to address such questions
as the departure from detailed balance. However, if one
is to compare alternative discretization schemes for a
particular problem, as is attempted below, it is much
more desirable to be able to determine the order of the
errors from a knowledge only of the equations (as was
done with the moment equations), rather than the solu-
tions. In particular, we want to be able to examine a
discretization of the Liouville superoperator and deter-
mine the order of error in detailed balance. At present,
no simple criterion has been identified that would permit
such an analysis, However, we may again examine the
factors that bear upon this problem.

Let us again consider the purely classical example of
an open system with no internal dissipation. Then the
particles will follow their classical trajectories
[q(0),p(8)], and along those trajectories the distribution
function f will be constant. Detailed balance follows
from the presence of a time-reversed trajectory
[g(—1),—p(—1)] for any given trajectory. Because the
energy is constant along a trajectory, the density f(l,p)
at an outflowing boundary will be equal to the corre-
sponding inflowing density f(/, —p) i, and only if, the
distribution functions in the two reservoirs are identical
functions of energy (i.e., in equilibrium). If we focus
upon a differential element of the trajectory, the condi-
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FIG. 23. Violation of the principle of detailed balance in the
discrete open-system model. The current density calculated for
an asymmetric structure in equilibrium is plotted versus the
mesh spacing used in the calculation. The results show that the
current density (which measures the departure from detailed
balance) is of O(4,) and is thus a result of the discretization,
not of the open-system boundary conditions.




William R. Frensley: Boundary conditions for open quantum systems

tion that there exists a time-reversed trajectory can be ex-
pressed as

(L /ifi)qy.p13d2.P2) = (L /i) gy, —pyigy. —py)
(7.12)

which becomes £ =/" when transformed back to the
density-matrix representation, leading to the unsurpris-
ing conclusion that time reversibility is equivalent to the
Hermiticity of £. In fact, the irreversible model (4.19)
satisfies condition (7.12) if we include the boundary terms
(4.20). It would appear appropriate to include these
terms in the detailed-balance test, whereas we neglect
them in the stability analysis. However, this argument
leads to the conclusion that the model ought to satisfy
detailed balance exactly.

A further consideration of the classical case suggests
that the departure from detailed balance might be trace-
able to discretization errors in the classical trajectories.
That is, when we restrict the distribution function to a
discrete mesh of points, a particle cannot exactly follow
the proper trajectory, and the time-reversed trajectory
might not exactly balance it. The way to correct such a
situation is to adopt the Lagrangian coordinates dis-
cussed in Appendix C. Then the upwind difference
would be applied to the directional derivative along a tra-
jectory and would exactly satisfy time reversibility.
However, this does not help in cases such as quantum-
mechanical tunneling, in which trajectories cannot be
defined. Discretization errors in the trajectories would
presumably lead to the conclusion that both A, and A,
contribute to the error, contrary to what has been ob-
served. If the error were of the form 0(4A,1+0(4,) and
the terms had coeflicients of different magnitudes, the nu-
merical experiments might easily have overlooked the
weaker dependence.

Another way to view the problem of detailed balance
in a completely quantum-mechanical context is to note
that the equilibrium distribution should satisfy the Bloch
equation (6.30). The stationarity of such a distribution
under time evolution by the Liouville operator would fol-
low from [£,# ., ]=0. We have noted that this is
necessarily true in a closed system, but it is not true for
an open-system model. In the present case the commuta-

TABLE 1. Order of errors in discrete open-system models.

‘T discretization Definition Reference
Upwind Eq. (4.19) a
Centered Eq. (7.13) b
Centered upwind boundaries Eg. 17.14) c
Density matrix _Egs. 3100314 d

*Frensley, 1987a.
"Jensen and Buot, 1989a.
*Kluksdahl et al., 1989.
“Frensley, 1985.
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tor has nonzero elements adjacent to the boundaries of
the system. These might be removed by including the in-
homogeneous terms, but the meaning of an inhomogene-
ous term in a commutator is far from clear.

The connection between detailed balance and reversi-
bility or Hermiticity suggests the following conjecture:
that it is impossible to satisfy exactly both detailed bal-
ance and the stability condition (irreversibility) in a mod-
el with a finite number of degrees of freedom (such as a
bounded, discrete model). That this is possible in a mod-
el with an infinite number of degrees of freedom, as in un-
bounded or continuous models, is the thrust of the con-
ventional theories of irreversibility. If this conjecture is
correct, this is a significant limit on the accuracy achiev-
able with discrete open-system models.

D. Comparison of discrete models

Table I summarizes the results of this analysis of the
discrete open-system model. It also contains results for
other discretization schemes that have been used for
similar calculations. The schemes included in the table
are, first, the present upwind-difference approximation to
the ‘T operator, denoted “Upwind.” Second is the
centered-difference approsimation studied by Jensen and
Buot (1989a) to resolve the problem of detailed balance.
In this approximation the kinetic-energy superoperator
T (for centered difference) becomes

‘Tu‘trl — _I)i_

= 5
AR ama,

N L (7.13)

8,4 (0
The third column presents an analysis of a centered-
difference approximation with upwind differencing ap-
plied only at the outflowing boundaries. This is the
A, —0 hmit of the Lax-Wendroff discretization (with
upwind differencing at the boundaries) used by
Kluksdahl, Kriman, Ferry, and Ringhofer (1989). The
continuous time limit is invoked in the present analysis to
remove any artifacts of time discretization and thus
evaluate this scheme on the same basis as the others.

This yields the superoperator ‘T'®' (for centered,
upwind boundary):
Momentum Detailed Stability:
Continuity balanciiiﬂ balance max ImAa
£q[ V] OA) +e,{V] o) —-0fA,)
el 'V] £.[V] +0t4,
O(A,)) +eg['V] O, 1+, [V] 013,43,
+o@h

o 0 0
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38,41, 48,15 for p, <O and j >1
. cub_) - pk 8 x 8j+|.j'—8j.j' fOl‘pk <0 and_j=l
gk jk’ mA kk' i : . .
" $8;+1,7—+8; -1 for p,>0and j <N,
6,8, forp,>0and j=N,

The last column of Table I summarizes the time-
reversible model based upon the density matrix that we
explored in Sec. III.

The errors in the continuity and momentum balance
relations were determined by analysis of the discrete
equations in the manner described above. These errors
include contributions from the potential superoperator V
as well as from the kinetic-energy superoperator 7. Be-
cause the different discretization schemes that can be
used for V are independent of those for ‘T, the error con-
tributions from YV (denoted as ¢,[V]) discussed in Sec.
VIL.B are tabulated separately in Table II. The density-
matrix model of Sec. III is set up so as to exactly satisfy
the continuity and momentum balance equations. This is
possible because the V| _, superoperator can be evaluated
in closed form when applied to the density matrix in real
space, but must be approximated by Eq. (4.14), (7.10), or
some similar expression when applied to a Wigner func-
tion.

The centered-difference form (7.13) also exactly
satisfies the continuity and momentum balance equations,
if we associate the current density J with the mesh points
rather than with the intervals as in Eq. (7.2). In the case
of the centered, upwind boundary scheme (7.14), the
change in the discretization of the gradient necessarily
introduces errors of O(A,) into all the moment equa-
tions. It can be argued that such errors are in some way
less significant because the occur only adjacent to tl:2
boundaries, but a central lesson of the present analysis is
that the boundary terms affect the entire solution, and
their influence is not localized to the regions near the
boundaries.

The considerations that bear upon departures from de-
tailed balance have been discussed above. The approach
described, studying the scaling properties of the equilibri-
um solutions to the Liouville equation as illustrated in
Fig. 23, does not work for the centered-difference (7.13)
or centered-upwind boundary (7.14) discretizations be-
cause one cannot directly solve tor the steady-state distri-

TABLE II. Error terms due to discretization of the potential:

Continuity

Momentum
‘}’_»qisir_citrifgt_igpg_wRﬂerence e{ V) balance (¢,[V)
Eq. (4.14) a 0 o
Eq. (7.10 b 01(a,) 0

*Frensley, 1987a; Kluksdahl er al., 1989.
"Mains and Haddad, 1988c.
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butions with these schemes. Both of them possess at
least one spurious mode whose eigenvalue is very close to
zero, which in regions of constant potential is of the form
cosmjl,, so that its sign alternates between adjacent
mesh points. If one attempts to solve for the steady-state
distribution, a relatively arbitrary fraction of this mode is
incorporated into the solution, rendering the results
meaningless. Nevertheless, the considerations previously
discussed strongly suggest that the discretization [Eq.
(7.14)], at least, probably violates detailed balance to the
same order as the upwind-difference scheme. The status
of the centered-difference scheme (7.13) is more prob-
lematical. Jensen and Buot (1989a) obtained improved
results in the sense of a small equilibrium current with
this scheme, but it does not seem to be particularly dis-
tinguishable from the others on the basis of the symmetry
property (7.12) or its commutator with %, ., The
density-matrix approach is presumed to satisfy detailed
balance exactly because it is time reversible.

The stability condition is, of course, absolutely essen-
tial for a useful model. It is expressed in Table I by the
scaling order of the greatest imaginary part of an eigen-
value. The scaling properties of the different discretiza-
tions were investigated by a procedure similar to that il-
lustrated in Fig. 23. Both the upwind-difference and
centered-upwind boundary schemes are stable, as we ex-
pect (all imaginary parts are negative), but the scaling is
different. This is illustrated in Fig. 24, which shows the
eigenvalue spectrum for the centered-upwind boundary
scheme for the same structure used previously. While all
the eigenvalues lie in the lower half-plane, they are
clustered much nearer the real axis than those of the
upwind scheme illustrated in Fig. 9. The centered-
difference and the density-matrix schemes are not stable,
as they possess eigenvalues with positive imaginary parts.
(It should be noted that the specific results obtained for
the centered-difference scheme are somewhat suspect.
The A, 5 dependence is suspiciously close to that of the
total number of arithmetic operations required to diago-
nalize the operator, 4, 8 so therc is a strong possibility
that what was observed here is just the cumulative effect
of roundoff errors.)

In summary, no model exactly satisfies all the condi-
tions one would desire. One must therefore decide which
model to use on the basis of what is most important for a
given application. The information in Tables 1 and II
provides the basis for making such a decision. The anal-
yses that are summarized in the tables, while somewhat
tedious, will be useful at two different levels. The first is
as a suminary of the properties of the different discretiza-

(1.14)
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FIG. 24. Eigenvalue spectrum resulting from the discretization
(7.14). This discretization results in a stable model.

tion schemes studied here. At a more general level the
present analyses provide an example of the sort of study
required to make sense of the multitude of discretization
schemes for a given physical problem.

VHI. CONCLUSIONS

The central conclusion of the present work is that an
open system, in the sense of one that exchanges particles
with i’s environment through spatially localizable inter-
faces, is necessarily irreversible. The reasoning behind
this conclusion is a reductio ad absurdum argument. We
have seen that a particular reversible model of an open
system possesses unphysical instabilities. The mathemat-
ical properties underlying these instabilities, namely the
existence of complex eigenvalues of non-Hermitian su-
peroperators and the requirement that these occur in
conjugate pairs due to time-reversal symmetry, are
sufficiently general that we should expect such instabili-
ties in any reversible model. Thus physically acceptable
models of open systems must be inherently time irreversi-
ble.

A particular class of irreversible open-system models
was presented, and the stability of the resulting solutions
was demonstrated. The irreversibility of these models
follows from making a distinction between particles
entering and leaving the system. Similar ideas, generally
applied in the time domain, are the basis for the estab-
lished theories of irreversibility and dissipation. The
present work demonstrates that spatial boundary condi-
tions can be used to introduce irreversibility in a way
very similar to that by which temporal initial conditions
do so.

The present study of the kinetic theory of open systems
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helps to clarify the roles of superoperators generated by
the commutator and anticommutator of a physical ob-
servable. It was demonstrated that, at the kinetic level,
only the commutator superoperators should acquire
non-Hermitian parts to model irreversible phenomena.
Anticommutator superoperators remain Hermitian and
are used to evaluate expectation values.

Some of the more mathematical issues concerning the
properties of the present open-system models remain un-
resolved, particularly the question of positivity of the re-
sulting Wigner distribution functions. However, the re-
sults obtained by applying these models to the resonant-
tunneling diode demonstrate the usefulness and credibili-
ty of this approach.

This work is certainly not an exhaustive examination
of the theory of open systems. Undoubtedly, many more
approaches to the subject can be formulated. However,
one should note that the significant behaviors of an open
system involve a strong coupling between the system and
its environment and large deviations from equilibrium
within the system. It thus appears unlikely that pertur-
bative approaches will contribute much to the theory of
such systems. Other analytic approaches will be effective
only in cases displaying some exceptional symmetry (and
of course the present definition of open system rules out
translational symmetry). It thus appears that numerical
models such as those examined here will probably be the
mainstay of such investigations.

Note added in proof: Three recent results in this tield
have come to the author’s attention: Jensen and Buot [J.
Appl. Phys. 67, 2153 (1990)] have studied a second-order
differencing scheme for evaluation of the Wigner func-
tion, and they find that this improves the results for the
resonant-tunneling diode in several respects. Govindan,
Grubin, and de Jong have reported an open-system
boundary condition for the density matrix (in real space)
which appears to avoid the instabilities discussed in Sec.
III. The boundary condition involves the specification of
both the density and the current. Register, Ravaioli, and
Hess have developed an improved traveling-wave
boundary-condition scheme for the time-dependent
Schrodinger equation. The latter two works will appear
in the Proceedings of the Workshop on Computational
Electronics, University of Illinois-Urbana, May 21-22,
1990, edited by K. Hess, J.-P. L.eburton, and U. Ravaioli
(Cluyer, Norwell, MA,| in press).
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APPENDIX A: SELF-CONSISTENT POTENTIAL
OF A TUNNELING STRUCTURE

The semiconductor heterostructure used in the
analysis in Sec. 1.B consisted of an undoped 3.39 nm (12
unit cells) layer of Aly ;Ga, ;As embedded in GaAs crys-
tal doped such that the mobile-electron density was
6x 10" ¢m™? and the temperature was 300 K. (This
particular structure was chosen to provide a clear
demonstration of the failure of the standard tunneling
theory.) The calculations were done for a bias of 0.2 V
(~8kT) applied to the structure.

The initial approximation for the self-consistent poten-
tial was obtained from a generalized (to finite tempera-
ture) Thomas-Fermi screening approximation. At its
most fundamental level, the Thomas-Fermi approxima-
tion can be viewed as an expression for the Wigner distri-
bution function:

1
+eB[T(x.kl+n(xv~—y] >

fix k)= " (AD
where T(x,k) is obtained by taking the kinetic-energy
term of the Hamiltonian in the neighborhood of x, ex-
tending this form over all space, and taking the expecta-
tion value of the resulting operator on the plane-wave
state k). This typically gives T(x,k)=#%*%k?%/2m*(x),
where the effective mass m* can vary with position, as
discussed in Appendix E. Integrating over all momenta
gives the more familiar expression (Blakemore, 1982)

nix)=N.F »1Blu—vix)]}, (A2)

where N_=2(m*/27#B)"? is the “effective density of
states,” and .f,,, 1s the Fermi-Dirac integral of order {.
The potential v can be separated into a Hartree potential
n.. and a “‘heterostructure” potential v; which describes
the heterostructure band offsets:

vix)=vy(x)=v(x). (A3)
The Hartree potential satisfies Poisson’s equation,
-V-eVu, =el[n(x)—Nyux)], (Ad)

where N, is the background positive charge density (ion-
ized donor density). Inserting Egs. (A2) and (AJ) into
{A4) produces a Poisson equation with a nonlinear source
term, which 1s readily solved 1n a finite-difference approx-
tmation by a multidimensional Newton iteration tech-
nique (Sclberherr, 1984, Chap. 7). The boundary condi-
tions for Eq. {A4) are obtained from the requirement that
the system asymptotically approach charge neutrality,

Ny
N

1

vy =, — = F b , (AS)
noH Bl

¢

with all quantities evaluated in the appropriate asymptot-
ic region. In practice, these boundary conditions are ap-
phied at fixed locations sufficiently distant that charge
ncutrality is well <atisfied (see Fig 1} Note that the
reference energy for v, may be chosen arbitrarily; this
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reference and the externally imposed p then uniquely
determine vy. Strictly speaking the Thomas-Fermi ap-
proximation is only an equilibrium approximation. How-
ever, in some structures, such as the present single-
barrier device, one can identify regions in which a local
quasiequilibrium ought to hoid. In such cases one can
obtain useful results for the nonequilibrium case by as-
suming that the chemical potentials differ from one re-
gion to another, as illustrated in Fig. 1.

To evaluate the self-consistent potential within the
conventional independent-electron tunneling theory, we
need to define precisely the (mixed) quantum state of the
system. The fundamental assumption of tunneling theory
is that the electrons will be found in the eigenstates of the
Hamiltonian (generally un-normalizable scattering
states), and the probability of occupation of the left- and
right-incident states is given by the different Fermi distri-
butions of the respective contacts. We may summarize
these assumptions by writing a density operator for the
system

p(x,x’)=fvl —z%d%E—)fl(E —u W E,xWHE,x")

« dE
+ [ = __rE-
fr' 5 ,(E)fl(E w, W, (E, x)

XYHEX"), (A6)

where v, are the asymptotic potentials to the left and
right, and s; . (E) is the velocity of an electron of energy E
at the respective boundary. Here f| is the Fermi-Dirac
distribution function integrated over the transverse mo-
menta:

FUE)Y=(m*/a#B)In(1+e BE) (A7)

The ¢, , are the solutions of Schrodinger’s equation in an
effective-mass approximation,

#9d 1 9

2 3% meix) 3x v+uvd=Ev, (A8)
with unit incident amplitude from the left or right, re-
spectively. Using Eq. (A6) we can evaluate any physical
observable of the tunneling system, although, in the
literature, the content of (A6) is usually expressed only in
an equation for the current density. However, to evalu-
ate the self-consistent potential we need to evaluate the
electron density, which is simply n{x)=p(x,x). Insert-
ing this into Poisson’s equation (A4) and again applying
the condition (AS) at cach boundary, we obtain the po-
tential shown by the dashed line in Fig. 1. This potential
is clearly unphysical, as discussed in the text, because in-
elastic processes are neglected. A proper description of
such processes requires a kinetic theory.

The quantum-kinetic calculations shown in Fig. 3 were
performed by solving the steady-state kinetic equation
{4.27) and Potsson’s equation (A4) self-consistently, again
by a multidimensional Newton iteration scheme. The
electron density n in Poisson’s equation was obtained
from the Wigner function nsing Eq. (7.1). Phonon
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scattering was included by adding the Boltzmann col-
lision operator described in Appendix F, for both
longitudinal-optic and acoustic phonons, to the Liouville
operator used in Eq. (4.27). The calculation of Fig. 3(a)
assumed fixed boundary distributions [Eq. (5.1)}. The
calculation of Fig. 3(b) assumed displaced equilibrium
boundary distributions, to take into account the trans-
port processes in the contacting layers (Mains and Had-
dad, 1988c). These distributions were just Eq. (5.1) with
argument p, —p,;, where p,=—u,mov/ox, u, is the
electron mobility (taken to be 5000 em?V 7~ !'s™1) and the
electric field was evaluated at the respective boundary.
This shifts the distribution function so that a greater den-
sity of electrons enters on the upstream side and a lesser
density enters on the downstream side, which makes the
screening of the electric field more effective.

Other self-consistent calculations of far-from-
equilibrium tunneling structures have focused upon the
double-barrier resonant-tunneling diode because of its
greater technological significance. Cahay et al. (1987)
performed a self-consistent Schrodinger calculation, as
described above. However, they assumed a device struc-
ture with undoped spacer layers on either side of the dou-
ble barrier. The contact potentials of the doped-undoped
junctions created an additional energy barrier which, by
confining the electrons, helped to enforce charge neutrali-
ty, and thus the unphysical effects described above were
avoided. If the undoped spacer layers had not been
present, an unphysical potential would have been ob-
tained.

Potz (1989) also performed a self-consistent
Schrodinger calculation. In this case the unphysical re-
sults were avoided by modifying the definition of the elec-
tron ensemble from (A6) to one in which the notch states
were weighted with the Fermi distribution of the
upstream electrode, in effect assuming a high rate of in-
elastic processes to fill these states. A displaced distribu-
tion function as described above was also used in this cal-
culation, but the drift momentum was chosen so as to
satisfy charge neutrality, rather than to approximate
ohmic conduction.

Kluksdahl et al. (1989) performed a self-consistent ki-
netic (Wigner-function) calculation of the type described
above, with a relaxation-time approximation for the col-
lision operator. The results showed an unphysically large
electric field at the upstream boundary. Similar results
were obtained by the present author (Frensley, 1989a,
1989b) from a kinetic model lacking the collision term.
As in the single-barrier case, the inclusion of phonon col-
lisions and displaced boundary distributions led to more
credible results (that is, more complete screening of the
field) for the self-consistent potential (Mains and Haddad,
1988¢; Frensley 1989a, 1989b).

APPENDIX B: VIOLATION OF CONTINUITY
IN THE PAULI MASTER EQUATION

The Pauli master equation (see Kreuzer, 1981, Chap.
10} is derived under the assumption that the density ma-
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trix is and remains diagonal in the basis of eigenstates of
the Hamiltonian,

plx,x"s0)=3 P(t)(x)¥f(x"), (B1)

where P,(t) is the probability of the system to be in state
i. The master equation is then

dP;/dt= 3 [W;P;(1}—W;Pi(1)], {B2)

i

where the W; are the golden-rule transition rates. Con-
sider transitions from a state i to a state j which have
different spatial distributions: ll/fi(xHZ#ij(x)lz. Then
the rate of change of the density is

d . _29F, 2 op; 2
atp(x,x,t)— 3 [, (x)]*+ o Il/}j(x)I
=[W,P,(1)— WP, (1]
X[ =y, (x0)1%] . (B3)

However, i and j are eigenstates of the Hamiltonian,
which means that {i{J[i ) and {j|J[j) are constant (for
scattering states) or even zero (for bound states). In ei-
ther case,

V-(ilJiy=v-(jlJj)=0. (B4)

Now, the rate of change of the density will be zero if ei-
ther of the two bracketed terms in Eq. (B3) is zero. In
thermal equilibrium the first term is zero by the principle
of detailed balance, but away from equilibrium it 1s, in
general, nonzero. The second term will be zero if the
probability distributions of the eigenstates i and j are
identical. This happens in only a very few cases, most
notably for the plane-wave states of a free particie.

Thus the assumption that the density matrix has the
form (B1) for far-from-equilibrium systems will lead. in
general, to a violation of the continuity equation.

APPENDIX C: BOUNDARY CONDITIONS
FOR LAGRANGIAN-VARIABLE APPROACHES

Broadly speaking, there are two ways to set up a trans-
port problem: the Eulerian approach, in which the coor-
dinates are fixed in the reference frame of the observer;
and the Lagrangian approach, in which the coordinates
are fixed in the reference frame of the transported fluid.
The present work focuses upon the Eulerian approach.
However, a number of formulations of quantum-
transport theory are expressed in terms of Lagrangian
variables. These include the center-of-mass approach of
Lei and Ting (1985) and the quantum Langevin-equation
approach of Hu and O’'Connell (1987). The accelerated
basis states studied by Krieger and lafrate (1986) adapt
the Lagrangian variables to pure-state quantum mechan-
ics. It appears that none of these approaches has yet
been applied to an open-system problem in the present
sense, so there has been no analysis of the effects of
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boundary conditions within the Lagrangian approaches.
Moreover, it is not at all clear that such approaches are
well adapted to the description of tunneling, where there
is no classical trajectory (although in this connection one
should note the work of Jensen and Buot, 1989b, in
which the trajectories in a resonant-tunneling diode were
inferred from a solution for the Wigner function).

In the classical case, however, much of the work deal-
ing with open systems (and most of the work treating
electron transport in nonuniform systems) has been cast
in terms of the Lagrangian variables. This includes both
deterministic approaches, such as that of Baranger and
Wilkins (1987), and stochastic approaches, such as the
widely used Monte Carlo technique (Jacoboni and Reggi-
ani, 1983; Castagne, 1985; Constant, 1985; Reggiani,
1985). If we consider the boundary conditions in such
approaches, it becomes apparent that the “inflowing”
boundary conditions [Eq. (4.7)] will occur quite naturally.
In the approach of Baranger and Wilkins the Lagrangian
variables define the mean trajectories of the particles, so
one must specify the initial conditions on the trajectory,
which is the value of the distribution function at the
point where the trajectory enters the domain. Thus the
boundary conditions are completely equivalent to Eq.
(4.7).

In the case of the Monte Carlo technique the boundary
conditions are determined implicitly by the details of the
algorithm used in the calculation, and such details are
often omitted from the published reports. To understand
the relationship between the algorithm and the boundary
conditions, let us consider the algorithms described by
Lebwohl and Price (1971) and Hockney and Eastwood
(1981) (which is also described by Castagne, 1985). Any
electron leaving the domain of the Lebwohl and Price
calculation is immediately replaced by another electron
entering randomly from either contact, with an imtial
momentum chosen from a thermal distribution. Thus
the number of electrons in the system is fixed (and the
fact that this leads to simpler and more efficient pro-
grams is the motivation for the Lebwohl and Price ap-
proach). A distribution function evaluated with this al-
gorithm will satisfy boundary conditions of the form
{4.7), but the values of the boundary distributions will not
necessarily remain fixed, as they depend upon the rate at
which electrons impinge upon the contact. To view the
problem another way, the same algorithm would be ob-
tained from a model in which the system was assumed to
be periodic, but which had a very strong scattering pro-
cess located at that plane where the system closed upon
itself. Thus this approach really describes a closed sys-
tem, and the fixed number of particles within the system
is an indication that the system is actually closed. A tru-
ly open system results if the particles entering the domain
are chosen by an independent stochastic process, and the
resulting distribution function would then satisfy Eq.
(4.7) with fixed boundary distributions. The algorithm
described by Hockney and Eastwood (1981) is almost of
this form, though the rate of particle injection is adjusted
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in response to the nearby density.

The discussion of Monte Carlo algorithms and bound-
ary conditions brings out an important point: The num-
ber of particles in an open system necessarily fluctuates.
While I have not addressed fluctuation phenomena in the
present work, a more complete description should deal
with such effects.

APPENDIX D: BOUNDARY CONDITIONS
FOR SCHRODINGER’S EQUATION

The application of Schrodinger’s equation to an open
system in the present sense is a large part of the formal
theory of scattering. The traditional approach is to ex-
pand the wave function in a set of traveling waves, at
least in the asymptotic region. This implicitly sets the
boundary conditions employed in the analysis. With the
present interest in the quantum-transport properties of
(often complex) fabricated structures, purely numerical
techniques for solving Schrodinger’s equation have be-
come more important. In these techniques one has a
direct representation of the wave function as a complex-
valued function of position, typically on a discrete basis
(using finite-difference or finite-element techniques, for
example). In this situation, the appropriate boundary
conditions must be explicitly specified, and the proper
choice of boundary conditions is a prerequisite to obtain-
ing any meaningful resuits.

Let us first consider the steady-state case in a one-
dimensional system extending over the interval 0 <x </.
In general, we seek wave functions corresponding to trav-
eling waves incident from either the left or the right.
These states will include a reflected component, which
appears at the same boundary as the incident wave, and a
transmitted component, which appears at the opposite
boundary. For example, for an eigenstate incident from
the left, we have

Pix)= Ae'k“"-%-Be ot for x <0, (D1}

Hx)=Ce™™ for x>1 . (D2)

We know the value of 4 (typically 4 =1), but we do not
know the value of B or C. A straightforward way to
evaluate ¥ is temporarily to assume C =1, from which
we obtain the initial conditions ¢¥(/)=1 and
dY(l)/9x =ik,. The steady-state Schrddinger equation
may then be integrated from x =1 to x =0, and the solu-
tion may then be normalized so that 4 =1.

A more elegant approach is the quantum transmitting
boundary method (QTBM) of Lent and Kirkner (1990).
The essence of this approach is to apply mixed boundary
conditions at each boundary. The mixed boundary con-
ditions involve fixing the value of a linear combination of
the wave function and its gradient. At the left-hand

boundary,
WO0)=A+B, (D3)
¥'(0) = 0¢ /x| =iky( A — B) . (D4)
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Solving for 4 we obtain

A=1[P0)—iy'(0)/k,] . (DS)

A similar expression for the incident amplitude at the
right-hand boundary (let us call it D) may be readily de-
rived:

D=3 +id'() /K] . (D6)

Equations (D5) and (D6) are the QTBM boundary condi-
tions. They define an implicit relationship between ¥ and
¥’ and thus they must be solved along with Schrodinger’s
equation itself. This is readily done in a numerical ap-
proach in which the Schrodinger equation is approximat-
ed by a set of algebraic equations: One simply adds (D5)
and (D6) to the set and solves them simultaneously. The
QTBM is readily extended to two-dimensional problems
(Lent and Kirkner, 1990) and to problems involving com-
plex energy-band structures that require more than one
basis function per unit cell (Frensley and Luscombe,
1990). Note that the QTBM boundary conditions are en-
ergy dependent, this dependence being implicit in the
dependence of Egs. (DS5) and (D6) on k4 and k;.

If the problem is time dependent (typically because the
potential varies with time), the problem of boundary con-
ditions is much more complex. If we start with the
knowledge that the electron in question is in a particular
eigenstate of the Hamiltonian H (0) at t =0, at some later
time ¢ when the potential has changed perceptibly the
electron will not in general be in an eigenstate of H(t),
but will be in a superposition of such eigenstates. Let us
focus our attention on the boundary at x =0 and assume
that the potential does not vary in its immediate neigh-
borhood. The wave function with unit incident ampli-
tude will be of the general form

Yix, )= kx4 gix ), (D7)

and all we know about the reflected wave ¢(x,t) is that it
is a solution of Schrodinger’s equation and all of its mo-
menta should be negative. (However, a momentum-space
expansion of ¢ is not feasible because we wish to deal
only with ¢ over a small range in x.) Mains and Haddad
(1988a) have reported calculations of the transient
response of a resonant-tunneling diode using

dlx,0)=B(x,t)e’ ~kx~wo (D8)

with B(x,t) assumed to be slowly varying in space and

time. Inserting Eq. (D8) into Schrodinger’s equation
gives

OB _ #ik OB  i#i 3'B

ot m dx 2m 3Jx?t (D9)

Mains and Haddad used the first-derivative term of Eq.
(D9) to update the value of B(0,t) (Dirichlet boundary
condition) in a time-integration procedure. This amounts
to looking a short distance into the domain to determine
what is coming out.

Let us consider another scheme for determining the
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boundary condition, which I have not tested in a practi-
cal computation, but which has the pedagogical advan-
tage of explicitly displaying the non-Markovian nature of
the problem. Suppose that we are implementing a
discrete time-integration scheme with step size A, and
that we wish to apply a Neumann spatial boundary con-
dition at x =0. Then we need a way to determine the
value of d¢/0x at the next time step. We Fourier trans-
form Schrédinger’s equation and solve for k to obtain

ik=xiV2m(fiw—v)/% . (D1Y)

In the case of the reflected waves propagating out of the
x =0 boundary we would choose the negative sign on the
square root. Now suppose that we approximate the
right-hand side of Eq. (D10), over an appropriate range
of energies, by a polynomial in —iw:

N
ik= ¥ a,(—iw)".
n=0
Inverting the Fourier transform, we obtain an expression
for the gradient of ¢:

N n N
% 0,1~ 3 angi;(o,zo)z S b, $(0,10—mA,),
ax n=o Of m=0

(DID
where the latter expression is a finite-difference approxi-
mation to the differential operator, and we approximate
this operator using only the values of ¢ at times prior to
1y because those are the only known values. (Thus the
time-reversal symmetry is broken.) Note that Eq. (D11)
explicitly demonstrates the dependence of the boundary
condition on the prior history of the system and thus
shows its non-Markovian character. The finite-difference
coefficients b,, may be obtained from the a, by expand-
ing ¢(0,t,—mA,) in a Taylor series. One thus obtains
the set of equations

¥ (—mA)"

“=Z T e

(D12

m=0

which must be solved to find the b,,.

The essence of this scheme is that we use the previous-
ly calculated values of the wave function at the boundary
to attempt to predict the next value of the gradient. This
is a particular example of linear prediction (Makhoul,
1975). It also illustrates a general property of derivations
of irreversible phenomena in quantum mechanics: When
one attempts to remove (or at least ignore) the effects of
some of the degrees of freedom in a system (in this case
the spatial locations outside the boundary), they reassert
themselves in the time domain, in the form of non-
Markovian terms (Zwanzig, 1964).

APPENDIX E: POSITION-DEPENDENT
EFFECTIVE MASS

In the semiconductor structures that originally
motivated this work the charge carriers whose motion we
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seek to describe are really quasiparticles, whose proper-
ties are determined by the energy-band structure f{or
energy-momentum dispersion relation) of the semicon-
ductor material. These carriers usually occupy states
near an extremum of a band, and thus for the simpler
cases of interest the band structure can be approximated
as

E(k)=v,+(#/2m* )k —ky)?, (E1)

where v, is the energy at the edge of the band and is just
the heterostructure potential used in Appendix A, k, is
the wave vector at which this extremum occurs, and m*
is the “‘effective mass” that characterizes the curvature of
the dispersion relation. This dispersion relation may be
modeled by the effective-mass Schrodinger equation

ifidW /3t = —(#2/2m* VW + (v, + o,V , (E2)

where v, is the Hartree potential, which is assumed to be
slowly varying. The wave function ¥ in Eq. (E2) is strict-
ly an envelope function for the true wave function. In
the Wannier-Slater approach to effective-mass theory
(Slater, 1949), W is a discrete function (defined on the lat-
tice points) giving the amplitude of the Wannier function
at each point [though W is approximated by a continuous
function to derive the differential equation (E2)]. In the
approach of Luttinger and Kohn (1955), ¥ is a continu-
um but band-limited function, which is multiplied by a
perfectly periodic Bloch function to obtain the complete
wave function.

A semiconductor heterostructure is a single crystal
that includes (deliberately introduced) local changes in
the chemical composition. These introduce changes in
the *"local band structure” which must be incorporated
into the effective-mass equation (E2) to obtain an accu-
rate model of the quasiparticie dynamics in a hetero-
structure. For the sake of concreteness let us consider an
abrupt heterojunction. The local band-edge energy v,
will be shifted across the heterojunction, and this effect is
easily incorporated into Eq. (E2) by making v, a function
of position. In general, the value of the effective mass
will also change across a heterojunction, and this requires
a more careful treatment of the kinetic-energy term.
{Another way to view this problem is to state the condi-
tions for matching W across an interface with discontinu-
ous m*. Because the matching condition follows unique-
ly from the form of the Hamiltonian, we shall focus upon
the iatter.) The problem is that many of the expressions
one might write down [such as that in (E2)] become non-
Hermitian when m* is taken to be a function of position.
The simplest manifestly Hermitian form is

2
r--f£3_ 1 29 (E3)

although other, more complicated expressions have been
suggested (see Morrow and Brownstein, 1984). In gen-
eral, it appears that Eq. (E3), which might be termed the
“minimal Hermitian form,” is an adequate approxima-
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tion when the magnitude of the change in m* is small, as
is typically true of equivalent energy bands in closely re-
lated materials. When the discontinuity is of a larger
magnitude, as when inequivalent bands are involved, one
probably needs to solve the multiband problem explicitly
and infer the form of the effective-mass equation from the
results (see, for example, Grinberg and Luryi, 1989).

We can obtain different discrete approximations to
(E3) depending upon where we assume the heterojunction
to be actually located with respect to the mesh points.
The most consistent scheme is to assume that the junc-
tion is located midway between two adjacent mesh
points. The discrete Hamiltonian (3.9) then becomes
(Mains, Mehdi, and Haddad, 1989)

2
H,;= A ! —2—+ ! +v;,
4A;2: m', m! mt
) (E4)
#i 1 1
Hi,i+|=Hi+|,i:"4A2 . . )
x [ miiq

which was used in all of the tunneling calculations
presented here.

If we use Eq. (E3) to construct the kinetic-energy su-
peroperator T, _,, how is the form of this superoperator
{in the Wigner-Weyl representation) affected? We might
hope that a simple expression would result, such as

T_ 2P _m* )" 'P.,. (ES)

(This is the expression that was actuaily used in the cal-
culations presented here.) Unfortunately, Eq. (E5) holds
only if

m*g) '=m* ) +m*(x)7'],

which holds only if the band structure varies slowly as a
function of position. In general, a position-dependent
effective mass will produce a nonlocal form for the
kinetic-energy superoperator in the Wigner-Weyl repre-
sentation (Barker, Lowe, and Murray, 1984). A more
complete treatment, expressing the Wigner-Weyl trans-
formation in terms of the Wannier and Bloch representa-
tions (rather than the position and momentum represen-
tations) has been developed by Miller and Neikirk (1990).
This analysis also demonstrates a nonlocal kinetic-energy
term.

APPENDIX F: THE BOLTZMANN COLLISION
SUPEROPERATOR FOR PHONON SCATTERING
IN SEMICONDUCTORS

To investigate the full range of phenomena that occur
in open systems, one needs a model of the dissipative pro-
cesses (such as scattering of electrons by phonons in
semiconductors) that occur within the system. However,
the question of the correct description of such processes
is at present far from resolved (see Jauho, 1989). There-
fore, in the inductive spirit of the present work, we shall
assume a priori that the -lassical Boltzmann collision
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operator acting upon the Wigner distribution is an ade-
quate approximation at some level. The form that the
Boltzmann operator takes within the present one-
dimensional model is developed below.

In solid-state physics the name “Boltzmann equation”
is applied to any transport equation that combines the
Liouville description of ballistic motion with a local Mar-
kovian model of the stochastic processes. This can in-
clude such processes as the scattering of electrons by
phonons or impurities. These will be considered to be
one-bady processes because the phonon and impurity de-
grees of freedom are not explicitly included in the model,
and thus (neglecting Fermi degeneracy) such processes
lead to terms linear in the distribution function. The
Boltzmann equation can also include a master-operator
description of two-body interactions such as electron-
electron scattering (and in statistical physics the name
“Boltzmann equation” usually refers more specifically to
this kinetic equation), and such a term will be nonlinear
in the single-particle distribution function (assuming the
Stosszahlansatz). For the present purposes we shall con-
sider only one-body interactions so that the collision
operator is linear.

The Boltzmann collision term is usually written in the
form (Ferry, 1980)

m,,fnq,m:f%";--[Wu.f(q,k')—Wuf(q,k)], (F1)

where W, . is the rate of scattering from plane-wave state
k' to state k. (To maintain consistency with the litera-
ture, we shall use the wave vector to label these states,
rather than the momentum.) Equation (F1) can be
rewritten to emphasize the linear, homogeneous nature of
the collision term:

(Cpfitg.k)= i"'—[w“.—f>(1\——1<') dk" W, ]
b 2T

X flg,k")

Efdk-C,,(k,k’)f(q,k’). (F2)
2r
The collision term is local, so that in the complete kernel
of ¢ there is a 6 function in ¢, which 1s suppressed from
the above definition. Note that the potential superopera-
tor 'V has a similar dependence on g [Eq. (4.10)}, and as a
result (“; and V" have the same sparsity structure in the
discrete approximation [see Eq. (4.26)]. Thus the addi-
tion of (“g to the calculation requires no modification to
the superoperator data structures or solution procedures.
The scattering rates W,,. are taken to be the Fermi
golden-rule rates. For electron-phonon scattering,

27 TWEYR —
W, = %-—;(kw(,,,ik YUSE, —E, * o), (F3)
where H, is the Hamiltonian for the electron-phonon in-
teraction and o is the phonon frequency. In Eq. (F3) and

the following, the upper sign refers to phonon absorption
and the lower sign refers to phonon emission. The transi-
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tion rates depend upon the full three-dimensional k of
each state, whereas the numerical calculations at present
consider only the longitudinal momentum & . Thus the
scattering rates must be ‘‘projected” onto the one-
dimensional model. To do so, we first assume that the
distribution of electrons with respect to the transverse
momenta of the initial state k| is a normahzed Maxwelli-
an distribution at a fixed temperature:

flq.k)=f (q.k)f (g.k}), (F4
where
fiK)=2mAkexpl —A2k2/2) (FS)

with A, defined in Eq. (3.3). The resulting scattering
rates are then integrated over the transverse momenta of
the final states:
2
QA

W, 4 =(—Eﬂ—)igfd*kifd'k"HleUplk’)i’

X(S(Ek _Ek' + ﬁ(i))
Xexpl —Ajki/20, (F6!

where 1 is the volume of the crystal. Henceforth we
shall drop the subscript from the & .

For polar optical-phonon scattering the
square of the matrix element is (in SI notation and from
Fawcett, Boardman, and Swain, 1970)
2rfiwy,, | el

oKD= — ;
P Qk—k'}?

absolute

H(k|H
4meg

1 1

B
€

X +(1)i . (F7)

lo

x dc

where o, is the longitudinal-optical phonon frequency,
and €, and €, are the low- and high-frequency permit-
tivities of the semiconductor, respectively. The phonon
occupation number N, is given by the Bose-Einstein dis-
tribution, and again the upper term (0} refers to absorp-
tion and the lower term (1) accounts for spontaneous
emisston. The one-dimensional scattering rates are ob-
tained by inserting Eq. (F7) into (F6). After some manip-
ulation, one can write an expression for the scattering
rate. First, define dimensionless quantities g and b as
_ | APk 'k =k T i, |

a ’ —

e e ‘i y
VA tk —k") |
. | Aik(k —k') ¥ Bhao, |

LV 2Apk — k) ! '

Then the scattering rate is

2

WP =258w, |-
Kk o | 4re,

x €4c

a?l

X e
ATk —k'|

1/2
l*;i ] erfc[supla.b)] . (FR)
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The collision operator for polar optical-phonon scatter-
ing in the one-dimensional model is then obtained by in-
serting Eq. (F8), for both phonon emission and absorp-
tion, into a discretized version of (F2).

The collision operator for acoustic deformation-
potential scattering may be similarly constructed. As-
suming equipartition of energy in the acoustic modes, the
matrix element is (Fawcett, Boardman, and Swain, 1970)

=2

(klH, Ik')|*= A= lk—Kk'|N
ar 20,50 “" 2Bp,,s2Q

oM

) (F9)

where =, is the acoustic deformation potential, p,, is the
mass density of the material, and s is the velocity of
sound. The second expression is obtained by expanding
the Bose distribution for low energies using w=s/k—k'|.
Inserting Eq. (F9) into (F6) and multiplying by 2 to in-
clude the equal emission and absorption rates, we obtain

oS4 e expl = ALk I—kD) 2]
kk ﬁB}\er,,.SZ l P[ T ]l

(F10)

Given the expressions such as (F8) and (F10) we can
readily construct the collision operator using Eq. (F2).
For the purposes of numerical evaluation, it is most con-
venient to accumulate the values of Cyz(k,k’) (in the
discrete approximation) by performing the assignments

Cplhk e Cylhk k) H (A, /2TRI Wiy
(F11)
Cylhk)e—Cylh, k) —(A, /20RIW,.

for all values of kK and k’'. One can implement this pro-
cedure in a single subprogram to which a function that
evaluates W, . is passed as an argument, and then invoke
this subprogram for each of the processes of interest. A
convenient test of the resuiting Cy is provided by the
principle of detailed balance. It is Cpf,, =0, where f
is an equilibrium (Maxwellian) distribution. The collision
operators obtained from Egs. (F8) and (F10) pass this
test.

The effects of the Boltzmann collision operators for
these phonon scattering processes on the steady-state
characteristics of the RTD are illustrated in Fig. 25. In
this calculation the matrix elements for GaAs using the
parameters of Fawcett, Boardmann, and Swain (1970}
were assumed to hold throughout the structure. The
acoustic-phonon scattering has a very small effect on the
J(V) curve. The longitudinal-optic phonon scattering
processes significantly decrease the peak current and in-
crease the valley current. The initial report of this calcu-
lation (Frensley, 1988b) employed a scattering operator
for the longitudinal-optic phonons which was one-half of
the correct value, due to an algebraic error. Similar cal-
culations have been done by Mains and Haddad (1988b).
Kluksdahl er al. (1989) and Jensen and Buot (1990) have
used a relaxation term to model the inelastic processes.
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FIG. 25. Effect of phonon scattering processes on the J(V)
characteristic of the resonant-tunneling diode, using the
Boltzmann collision operator. Scattering by longitudinal-optic
phonons significantly reduces the peak current and increases
the valley current. The effect of acoustic phonons is nearly
negligible. The temperature was 300 K.

APPENDIX G: DEVELOPMENT OF THE DISCRETE
WIGNER DISTRIBUTION FUNCTION FCR
SIGNAL ANALYSIS

The Wigner distribution function has been found to be
useful in the field of signal analysis, where it provides a
way to define a time-dependent frequency spectrum
(Claasen and Mecklenbrauker, 1980). The notion that a
frequency distribution can vary with time is quite intui-
tive: Consider our usual concept of music as a temporal
sequence of notes. But it encounters precisely the same
problem with respect to the Fourier uncertainty principle
that the notion of a position-dependent momentum dis-
tribution does with respect to the quantum-mechanical
uncertainty principle. Thus the Wigner distribution may
be employed for the same purpose as in quantum
mechanics: as a rigorous description that has a simple
interpretation in the “classical” regime (in this case, for
signals whose frequency spectrum changes slowly).

The relevance of this body of work to the present dis-
cussion is that digital signal analysis employs discretely
sampled signals that are fully analogous to the discrete
models discussed in Sec. VI.LA. Many of the mathemati-
cal properties (and difficulties) of the discrete Wigner dis-
tribution discussed there have already been explored in
the context of signal analysis. The purpose of this Ap-
pendix is to delineate the parallels between the signal-
analysis work and the work reviewed in the body of the
present paper.

In the signal-analysis problem, one has a function x(¢)
that has been sampled with an interval T so that only the
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values x (n)=X(nT) are known for integral n. The sam-
pled signal corresponds to a Schrodinger wave function
defined on a spatially discrete basis. The autocorrelation
sequence, ¢, (m,n)=xyx, (or a statistical average of
this quantity, Oppenheim and Schafer, 1975, Chap. 8),
corresponds to the density matrix. The Wigner distribu-
tion function f(n,8), where n represents the time (and
corresponds to j) and O represents the frequency (and
corresponds to p), is obtained from the autocorrelation
sequence by a transformation similar to Eq. (4.13).

The initial work on the discrete Wigner distribution by
Claasen and Mecklenbrauker (1980) used precisely the
definition (4.13) (but regarded 8 as a continuous variable).
They observed that only one-half of the autocorrelation
information is employed in this definition, as illustrated
in Fig. 21, and noted that, as a consequence, @ is periodic
with a period of 7 rather than 2. (The corresponding
expression in the present work is N,A,=m#i/A;) In a
later work, Claasen and Mecklenbrauker (1983) investi-
gated the consequences of modifying the definition of the
discrete Wigner distribution by modifying the kernel of
the transformation (4.13) to be something more elaborate
than just an exponential function. In particular, they
weighted the exponential by a factor very similar to that
which appears in Eq. (7.10), used by Mains and Haddad
(1988a, 1988c) to weight the potential kernel. Poletti
(1988) has further developed this analysis.

If the details of the physical system that produced the
signal x (n} are unknown, as is usually the case in signal
analysis, the analog of the Liouville equation 1s also un-
known. Thus, in this context, it is natural to try to
resolve the problems of the discrete Wigner function by
modifying the expression by which it is defined. This ap-
proach is complementary (and quite possibly equivalent)
to that explored in Sec. VII for modifying the Liouville
equation.
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I. Summary

NANOZ2D is a general two-dimensional device simulation code which obtains the self-
consistent potential energy surface defined by the conduction band minimum for a wide class of
two-dimensional III-V semiconductor heterostructure devices. It does so by solving a two-
dimensional nonlinear Poisson equation, utilizing a zero-current, local thermodynamic equilibrium
approximation for the carricr density. By “"two-dimensional” we mean that the user can specify, in
addition to an arbitrary sequence of epitaxial growth layers in the vertical direction, an arbitrary
lateral vanation of material composition and doping, such as might be achieved by epitaxial
regrowih techniques. In addition, the user can specify the lateral bias across Ohmic emitter and
collector contacts as well as voltages applied to a back Ohmic contact and one or more top Schottky
gates.

NANO2D is implemented on the CRL VAX system. It may be used to investigate and
optimi.¢ heterolayer design in high electron mobility transistors (HEMTs) and in lateral resonant
tunnel’ng devices (LRTDs) which utilize split-gate top contacts. It may also be used to explore
epitaxii! regrowth schemes which enhance electron confinement, and to model the effects of the
applicason of different gate and back contact voltages on the electron potential energy surface.

‘the current implementation explicitly accomodates AlGaAs and InGaAs compounds.
Howe.er, the code's capability will be generalized to all III-V compounds in the forthcoming
upgrad..

I[I. Device Structure

L order to demonstrate the capabilitics of the NANO2D code, and to provide users with
some s 'nse of what sort of input results in what sort of output, the bulk of this document will be
given i. the context of an example device, shown schematically in Fig. 1. This particular structure
could te a test design for a LRTD. The idea in this design is to confine electrons vertically in a
two-dii.iensional electron gas (2DEG) in the InGaAs layer and create an electrostatic double barrier
potential in the lateral direction for lateral resonant tunneling. The two Schottky gates on the top of
the structure will control the height of the lateral double barriers. Regrowing n+ doped material
outside of the gates is expected to enhance the height to width ratio of the double barrier potential in
the InGaAs layer.

Fig. 1(a) shows a top view of the device and indicates the position of emitter and collector
contacts, gates, and regrowth regions. Panel (b) shows a vertical cross section along the dashed
line in pancl (a). This device consists of six layers of semiconducting material, although there is no
practical limitation on the number of layers which can be modeled. The top layer contains five
lateral regions of GaAs with different doping concentrations. The second layer also contains five




Em tter = Collector

regions, but with variations in the material composition as well as the doping. The thickness of
cuch layer, and the width, composition, and doping in each region within each layer is specified by
the user. The position of the left and right edges of up to five Schottky gates is also user-specified.

Emitter [

Gates

undoped GaAs
Back Contact
E—__'u__] negopea Gaas

undoped GaAs

ne doped GaAs [: Ohmic contact
B oooea AtGass B scrottxy contac

ne doped AlGaAs

undoped InGaAs

Fig. 1 Generic device structure for NANO2D

II. Using NANO2D
A. The NANO2D Command File

NANO2D must be run within the VAX environment. Since it takes on the order of five CPU
minutes to run, users are advised to submit the job to a batch queue using the SUBMIT command.
The command file which compiles, links, and rans NANO2D, and which supplies the input, is
tonnd in SCL:[BOUCHARD.RELEASE]NANO2D.COM. Users should copy this file into their
own directories and make changes to input in their own versions. Throughout this technical report
references are made to specific lines of the NANO2D.COM file. To aid the reader, the Appendix
contains a copy of this file, with input corresponding to the example device of Fig. 1




The first change which should be made to [your_directory]NANO2D.COM is the default
directory. The second line of the file should read

$ SET DEFAULT [your_directory]

The string "your_directory” should be replaced by the name of the directory where output files are
to be written. Aside from the NANO2D.LOG file, which contains a summary of the device
parameters and other useful information, the only ouiput files are HP plouer files which are printed
autormnatically by the NANO2D.COM file and may be deleted as soon as printing is completed.

B. Input

The eighth line of NANO2D.COM issues the command to run the NANO2D program. The
lines that follow immediately after the RUN command are input statements. The following
discusses the required input. Input parameters appearing on the same line should be

separated by blank space, pot by commas, periods, or any other punctuation
marks.

(1) sitle

The 80-character line immediately following the RUN command is reserved for user
comments. It may be used to identify or "title” the particular set of input parameters, and will
appear as a title on graphical output. It may contain any combination of alphanumeric characters,
punctuation, and white space.

(2) Device Structure Input

(a) vmesh Imesh temp

The line immediately following the title must contain three real values, the vertical mesh
spacing (in nm), vmesh, the lateral mesh spacing (in nm), /mesh, and the temperature (in K),
temp. Any comments to the right of these three real values are ignored by the program. We
recommend that vmesh be chosen such that no semiconductor layer contains
fewer than five mesh points, and that Imesh be chosen such that no lateral
region contains fewer than eight mesh points. This will ensure a potential
energy surface which varies smoothly in both dimensions.

(b) The next section of input contains the structure information, layer by layer, and
region by region within a layer. The specification of a single layer requires one line of input
for each region of material in the layer. (e.g. The top layer of Fig. 1 requires five lines of
input. whereas the third layer requires only one line, as shown in the Appendix.)
Specifically, the input for a layer consists of (i) one line for the first (left-most) region; (i1) if
necessary, lines for the remaining regions, in order from left to right; and (iii) NEXT, to
stgnal to continue to the next layer. The form of the input (1), (i1), and (iii) are given in the
following:

(i) Ithick width dope material composition
The first line of input for one semiconductor layer contains the layer thickness (in
nm), lthick, the width (in nm) of the first (left-most) region in that layer, width, the

doping concentration (in cm™3) of the first region, dope, and the material composition
in the first region. (The format of the material composition is discussed in sub-section

(d).)




(i) width dope material composition

The second and subsequent lines for the same layer just contain the width, dope,
and material composition of the respective region within that layer. Note that Ithick
is not included in these input lines, since the thickness for all the
regions in the layer is specified in (i).

(ii1)) NEXT
When the last (right-most) region of the layer has been specified in this way, it is
followed by a line containing the word NEXT, meaning go on to the next layer. It
must be in all capital letters with no punctuation.

(c) END

When all layers have been entered (the last layer must also end with NEXT),
the following line contains the word END, indicating the end of semiconductor layer input.
It also must be in all capital letters with no punctuation.

(d) The input format for the material composition is easiest described through a series
of examples:

(i) GaAs is indicated by Ga 1.00
(i) InAs is indicated by In 1.00
(iii) Gag5Alp3As is indicated by Ga 0.70 Al 0.30
(iv) Ing, 5Ga0_85As is indicated by In 0.15 Ga0.85

The pattern here is straightforward. The Group-III element is followed by its mole-
fraction. As long as there is additional input to the right, the program continues to read it.
Currently, it is assumed that the Group-V element is As. In the forthcoming upgrade,
however, other Group-V elements will also be allowed. In the newer version, if no Group-V
element appears in the input line, then As will be assumed. If, however, P or Sb, is desired,
that is indicated with the appropriate chemical symbol to the right of the Group-III input, as
in the following examples:

(vi) InP is indicated by In 1.00 P
(vii) AlSb is indicated by Al 1.00 Sb
(viii) Ing »5Gag 75P is indicated by In 025 Ga 075 P

Note: It is important not to have extra characters or comments to the right of
the structure portion of the input (part (2)), as the program will read it and
attempt to interpret it as additional input data.

(3) Boundary condition information

(a)f lev pin

The line immediately following the 'TEND' of the structural input must contain one real
number, f lev_pin, the energy value (in eV) of the Fermi-level pinning of the top layer of
semiconducting material. For GaAs this number is usually taken to be 0.7 eV, half of the
band gap energy. If the top layer is something other than GaAs, then a f_lev _pin value equal
to half the band gap of the surface material is a reasonable choice.




(b) The next section of input contains information about the top contacts, or Schottky
gates. The first line simply specifies the number of gates. The lines that follow give details
about each gate, one line of input per gate, ordered from left to right.

(1) ngates

The next line contains an integer, ngates, the number of gates. The current
version of the program supports up to five gates. Note: If you wish to run with
po gates, be sure to read Section V, "What Else Users MUST Know

Before Modeling a Device."

(it) lpos rpos voltage Schot_bar

The following ngate lines each contain four real numbers characterizing each of
the gates. Lpos specifies the position of the left edge of the gate; rpos specifies the
position of the right edge of the gate. Both are measured in nm from the left boundary
of the device. Voltage is the voltage applied to the gate in volts, and Schot_bar is the
height (in volts) of the Schottky barrier formed at the interface between the gate and the

top semiconductor. The gates should be ordered from left to right. e.g. If ngates = 3,

then the left-most gate should be entered first, the middle gate should be entered

second, and the right-most gate should be entered last.

(c) Ohmic contact voltages

(iii) v_emit v _collect

The next line contains two real numbers, v_emit and v_collect (in volts), the
voltage applied to the emitter (left) contact and collector (right) contact, respectively.

(iv) v_back

The next line contains a real number v_back (in volts), the voltage applied to the
back contact.

Remarks:

(1) The contact voltages should be specified with respect to some
ground. For example, one could specify v_emit =0.0 (ground) and
specify v_collect and v_back with respect to v_emit.

(2) The Schottky barriers should be positive valued and indicate the
height to which the Fermi level of the semiconductor is pushed up with
respect to the conduction band of the metal gate.

(3) If a bias is to be applied from the emitter to the back contact,
then at least one larger-band-gap material layer must isolate the back
contact from the emitter and collector regions. See Section V, "What
Else Users MUST Know Before Modeling a Device."

(4) Output Options

(a) flag

The next line contains an integer flag. If flag <0, then two figures are generated: a plot
of a lateral slice of the potential energy surface, and a plot of a vertical slice down the center
of the potential energy surface. If flag > 0, then three figures are generated: the lateral slice,
the center slice, and a plot of the full potential energy surface.

(b) depth

The next line contains the depth (in nm) below the surface of the structure where the
lateral slice plot is to be generated.

(c) pen_speed

The last line of input contains an integer, the HP plotter pen speed. For most cases "2"
is a good choice. For publications or foils, we recommend a slower speed, "1" or even "0".




Remark:

If flag <0, then it is a good idea to put an exclamation point (!) in front
of the last statement of the NANO2D.COM file. It would then read:

!$ pmhp hp7550a.dat;-2

This prevents printing a version of the HP-plotter file left over from a
previous run.

C. Modeling a Device

When the input has been changed to specify the structure of the device of interest, simply
SUBMIT the NANO2D.COM file to a batch queue. Within ten or fifteen minutes wall-clock time
the graphical output will be printed on the HP plotter in the VAX printer room in the Research
West building. If output is desired in the Research East building, the last three commands in the
NANO2D.COM file must be changed from "pmhp" to "prhp". For foils in Research West, the
command is “pfmhp”, and for foils in Research East, it is "pfrhp”. The lateral slice plot, the center
slice plot, and if flag > O the full potential surface are printed on the designated printer when the
program has finished running.

IV. Output

The NANO2D.LOG file contains a report of the various input parameters of the run and other
diagnostic statements. Most of the output is in graphical form.

A. What the Output Looks Like

The first figure output is a constant-z slice of the potential as a function of the lateral
position x. The z-position of the slice is specified by the variable depth, as discussed in the
last section. Fig. 2 illustrates this output for the example device of Fig. 1, with a depth of
27.0 nm which is just at the top of the InGaAs layer. The dashed lines (these will be red in
the actual output from the program) indicate the position of the Fermi level in equilibrium
with the emitter (to the left) and the collector (to the right).
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The second figure plotted is a constant-x slice of the potential down the center of the
device. Fig. 3 shows the center plot for the example device.
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The lateral position for the slice is half-way between the emitter and collector, i.e. half of the
x dimension of the device. For a device with two gates symetrically placed, this gives a slice
mid-way between the two gates. For some other number of gates, one may prefer other
vertical slice positions. See Section VII, "User Feedback" to report suggested changes.

The dashed lines (again, these will be red in the actual output) show the position of the
Fermi level. Since it is assumed that the back contact is isolated from the emitter/collector
region of the device by an AlGaAs barrier near the bottom of the device (e.g. layer 4 of the
example device serves this purpose), then by default the Fermi level is drawn to either side of
this layer. If no such layer exists in your model, and some alternative Fermi-level plotting is
needed, again see section VII, “User Feedback” to request changes.

If the variable flag is greater than zero, then a third figure is also plotted, the full two-
dimensional potential energy surface as a function of both x and z. This plot is shown, for
the example device, in Fig. 4. The z-axis is reversed in this figure to provide the best view




of the surface. Users must keep in mind that although in this figure the origin is in the lower
left corner of the device, in the input, the origin is in the upper left corner.The contours (red
in the actual output) indicate the position of the Fermi level in equilibrium with the emitter
(near edge), the collector (far edge), and the back contact (to the right).
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Fig. 4 Complete band edge surface for structure listed in the Appendix

B. Understanding the Output

In order to gain some sense of what these figures mean, look first at the 2-D conduction
band profile (Fig. 4) and compare it with the structure of the device in Fig. 1. The top of the
device is to the upper left, where the potential bends up due to Fermi-level pinning. The two
barriers which originate at the top of the structure are due to a voltage applied to the Schottky
gates. The barrier from z=30 to 40 nm is the AlGaAs layer (layer 4), and the two tall bumps
at about z=50 nm are due to the undoped A1GaAs regions of layer 2.

The first thing to notice is that, in general, regions of AlGaAs have relatively high
potential energy, InGaAs has a very low potential energy, and the GaAs regions are
somewhere in between. This is because of the difference in band gap of the three types of
materials. Secondly, note the big dip in potential energy in the region between the undoped
AlGaAs regions of layer 2. Even though all three regions in the middle of layer 2 are
AlGaAs, the heavily doped region has a lower potential energy than the undoped regions.
This device design exploits such effects by including regions of regrown heavily doped
GaAs on the outside of the gates. This enhances the deepening of the InGaAs layer on the
outside, to increase the height to width ratio of the double barriers.

Now that we have a global idea of what is going on in the device, from looking at the
2-D potential surface, we can focus on what is going on in some particular area of interest. In
the example device, that region of interest is the InGaAs layer, where we hope to have a good




double-barrier potential set up with the Fermi level above the conduction band both to the left
and to the right of the barriers. The slice-plot (Fig. 2) shows clearly that this has been
achieved, and allows a clearer view of the lateral shape of the potential. The center-plot (Fig.
3) provides a "side view", to allow us to determine how isolated the InGaAs layer is from the
back contact, and from the surface of the device.

V. What Else Users MUST Know Before Modeling a Device:
"Boot-Strap"” Approach to Modeling a Device

NANO2D solves for the self-consistent conduction-band profile using the "zero-current”
approximation. This approximation is valid for a device under bias only if the contacts are
sufficiently isolated from each other by potential barriers. We recommend a "boot-strap” approach
to modeling a device under bias: First, model the device with zero volts at all three contacts. Then
add gates, and adjust the gate voltages and back contact voltage until you are satisfied that the
emitter and collector are isolated by electrostatic potential barriers. Then, you are ready to apply an
emitter-collector bias.

If two contacts are not sufficiently isolated and there is a potential difference
between them, the program will work in an unpredictable way. Either it will not
converge, or it will converge to a a solution which is likely incorrect. It is very
important to make sure the contacts are isc'ated before applying a bias. _

It follows, therefore, that this program is not appropriate for modeling a device under bias

with no gates unless there is a large-band-gap material region separating the emitter from the
collector.

VI. Some Helpful Hints
A. Biasing the Back Contact

Applying a voltage to the back contact which is negative with respect to the emitter results in
the energy band near the back contact being pulled up. To illustrate uiss effect, Fig. 5 shows the
center plot for the same example structure as in Fig. 3, but with av_back =-0.2 V.
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We have found that this negative bias tends to pull electrostatic barriers set up by the gates deeper
into the device. Note in Fig. 6 how much higher the barriers rise above the Fermi level with -0.2 V
applied to the back contact, than in the 0.0 V case of Fig. 2.
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This may be important for isolating tiie emitter from the collector with electrostatic barriers. If, for
example, the barriers were entirely below the Fermi level without any back-contact voltage, the
application of some negative voltage may pull the barriers up sufficiently to isolate the emitter and
collector, so that the device could then be modeled with an emitter-collector bias.

B. Surface Depletion

Fermi-level pinning of 0.7 eV results in depletion of the surface to about 25 nm in GaAs.
Any lateral pathway through GaAs where current is to flow must be more than 25 nm deep, or it

will be depleted. An InGaAs pathway may be placed somewhat less than 25 nm and still not be
depleted.

C. One Job at a Time
Each of the graphical output files is named HP7550A.DAT, and a single job creates two or

three versions of the same filename. If more than one job is simultaneously creating two or three
versions of the same filename all in the same directory, it is difficult to sort out which output




figures belong to which job. We recommend that not more than one NANO2D job be run in the
same directory at the same time.

D. Publication-Quality Graphics

The recommended vertical and lateral mesh spacings may be unsuitable for publication-
quality graphics. The resolution of the full potential energy surfzce, after reduction to publication
size, would likely be poorer than desired. For making publication-quality figures, a larger mesh
spacing may be in order. However, we still strongly recommend a small mesh spacing for every-
day use, to ensure accurate simulations. (It goes without saying that one should compare the
results of the larger-mesh simulation with those of the smaller-mesh, before publishing.)

VII. User Feedback

Please forward any comments, observations of bugs, or requests for added functionality to
James H. Luscombe, 995-6968, MS 154, VAX RESBLD::LUSCOMBE.
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Appendix

$ ASSIGN NL: SYSSPRINT

$ SET DEFAULT [bouchard.release]

$ set noverify

$ pvi

$ set verify

$ PASCAL nano2d ]

$ DI3LOAD nano2d,[FRENSLEY.GRAPHICS]WRFPLOT.OLB/library share

$ purge nano2d.*

$ RUN nano2d

Lateral Resonant Tunneling Device

1.6 5.0 300.0 VERT MESH SPACING, LAT MESH SPACING

(NM), TEMPERATURE(K)

150 70.0 2.0e18 GA 1.00
20.0 1.0e10 GA 1.00
30.0 7.0E18 GA 1.00
20.0 1.0E10 GA 1.00
70.0 2.0E18 GA 1.00

NEXT

10.0 70.0 2.0E18 GA 1.00
20.0 1.0E10 GA 0.75 AL
30.0 2.0E18 GA 0.75 AL
20.0 1.0E10 GA 0.75 AL
70.0 2.0E18 GA 1.00

NEXT

8.0 210.0 1.0e10 GA 090 IN 0.10

25
25

0.
0.
0.25




NEXT

10.0 210.0 2.0E18 GA 0.75 AL 0.25
NEXT

5.0 210.0 1.0E10 GA 1.00

NEXT

25.0 210.0 2.0E18 GA 1.00

NEXT

END

0.7 f_lev_pin (eV)

2 number of gates

72.0 88.0 -0.2 0.7 left and right edges of gate, voltage, and Schottky_bar
122.0138.0 -0.2 0.7 left and right edges of gate, voltage, and Schottky_bar

0.0 0.05 emitter and collector voltages

0.0 back contact voltage

1 flag > 0, 3D plot; flag <= 0, just center slice
25.0 location of slice to be plotted

1 pen speed (for hp plotter)

$ pmhp hp7550a.dat;

$ pmhp hp7550a.dat;-1
$ pmhp hp7550a.dat;-2
$ del nano2d.map;*

$ del nano2d.lis;*

$ EXIT
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Tunneling spectroscopic study of finite superlattices
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We present a tunneling density of states study of the transition from a superlattice miniband
to a sequential coupled well structure. We have observed by tunneling spectroscopy the
eigenstates of a finite superlattice system far below the Stark localization threshold. The
transition from an indistinguishable miniband to a coupled well structure is experimentally
found to be 2.5 meV < W(miniband width)/n(# periods) <10.5 meV.

Semiconductor superlattices have received renewed in-
terest for the design and fabrication of novel electronic
structures utilizing perpendicular transport. A central is-
sue for the design, utilization, and analysis of superlattice
structures is the nature of the electronic states. In weakly
coupled superlattices it has been shown' that the perpen-
dicular transport proceeds via sequential tunneling,
whereas under the proper conditions a miniband forms.2™
We present here a tunneling density of states study of the
transition of a finite superlattice from a superlattice mini-
band to a coupled well structure. .

A generic superlattze tunnel diode structure® was uti-
lized to study the density of states in a series of superlat-
tices. Figure 1 shows a self-consistent band diagram at
resonant bias (a), along with the experimental current (/)
{and conductance (G)] versus voltage (V) characteristics
(b), of the type of structures investigated in this study.
This specific example is a structure identical to the initial
work of Davies er al®> The band diagram is determined
from a self-consistant finite temperature Thomas-Fermi
zero-current calculation,® with the superlattice structure
determined from an envelope function calculation super-
imposed. When the top of the first collector miniband
crosses the bottom of the available emitter electron supply,
a decrease in current occurs due to the requirement to
conserve both energy and momentum. This is defined as
the resonant (peak) voltage. It should be emphasized that
realistic band diagrams are necessary for an accurate un-
derstanding of resonant effect.

Table I illustrates the series of superlattice structures
investigated. Structure S1 was identical to that of Davies et
al.® The remaining samples consisted of a Cr-doped semi-
insulating GaAs substrate, a 0.5 um undoped GaAs buffer,
a 1.0 um 1x10'® cm ~? n * -GaAs bottom contact, a 420 A
110" cm ~* (last 20 A undoped) GaAs contact to su-
perlattice transition r2gion, a superlattice/tunnel barner/
superlattice region symmetric about the tunnel barrier, a
400 A 2x 10" cm ~® GaAs top contact, and an InGaAs

*'Department of Electrical Engineering and Computer Science, Massa-
chusetts Institute of Technology, Cambridge, MA 02139.

"'New address: Department of Electrical Engineering, Yale University,
P O. Box 2157 Yale Station, New Haven, CT 06520-2157.

*'New address: Erik Jonsson School of Electrical Engincering and Com-
puter Science, University of Texas at Dallas, P. O. Box 830688, Rich-
ardson, TX 75083-0688.
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top nonalloyed ohmic contact. To study the effects of con-
tact doping, S3 had symmetric 400 A 1x10'" cm ~? con-
tact regions adjacent to the superlattices. S5 was identical
to S4, except that the bottom superlattice was replaced
with bulk GaAs (though the doping modulation was iden-
tical). Structural parameters were verified by cross-section
transmission electron microscopy, and photoluminescence
of nominally identical superlattices (grown without doping
and contact structures) was used to verify superlattice
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FIG. 1. (a) Self-consistent I"-point energy band vs epitaxial dimension of
sample S1 at resonant bias. The hatched regions denote the 25-meV-wide
lowest superlattice minibands and the dotted lines the Fermi level. The
structure is identical to that reported by Davies er al. (Ref. 15) T =42
K. (b) Experimenial current (solid) and conductance (dashed) vs volt-
age characteristics of S1. T=4.2 K.
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TABLE 1. Suminary of the superlattice tunneling structures investigated.
E5, mn — E. denotes the energy of the bottom of the first miniband (in
meV), referenced to GaAs. W denotes the width (in meV) of the first
miniband. The superlattice minibands were calculated using an infinite
envelope function approximation. E,5, — E,denotes the Fermi energy of
the superlattice (in meV), referenced to GaAs.

d(i,‘A\/fiAl(j.nA~ Eslv.mnl - Er L4 EF.SL - Er
Sample (meV) (meV) (MeV)
S1 60/30 53 30 62
S2 40/50 90 25 96
S3 49/14 45 105 57
S4 40/10 43 190 55
S5 40/10 43 190 55

(asymmetric)

band gap and aluminum content. Mesas as small as
4(um)’ were fabricated using standard contact lithogra-
phy processing. )

The superlattice structure S1 is presented to compare
to previous work.® Structures S2-4 are also ten period su-
perlattices, designed such that the superlattice miniband
widths span the available range in the conduction band.
The GaAs wells of these superlattices were doped at
12107 em Y the Al :Ga, ;7;As barriers were nominally
undoped, and the tunneling barrier was kept fixed at 100 A
of Aly,:Ga §;7,As. S2 has the same approximate miniband
width as S1, with the second miniband “virtual” only. S3 is
designed to have the same approximate superlattice energy
centroid as S2, with a factor of 4 larger miniband width. S3
and S4 have the same miniband minimum, with S4 having
almost a factor of 2 larger miniband width than S3. In
addition, the top of S4's first miniband is “virtual.” S5's
superlattice is identical to S4, except the asymmetry allows
one to investigate injection into a superlattice from a 3D
system, and vice versa.

The superlattice Fermi levels were calculated by as-
suming free electrons in the transverse directions and
Bloch states for the vertical direction. The Fermi level was
then inferred as the chemical potential which leads to a
miniband-occupied carrier density corresponding to the av-
erage carrier concentration of the sample.” It should be
noted that determination of the superlattice Fermi level in
general produces a higher Fermi level than that for a bulk
system of the same density.

The I-V and G-V characteristics of samples S1 and S2
are very similar, exhibiting well-defined negative differen-
tial resistance (NDR) at low temperature [with peak-to-
valley (P/V) current ratios as high as 2:1 for S1, 2.4:1 for
S2]. NDR is observable (P/V 1.3:1) at room temperature
in 82, and an inflection is clearly evident at room temper-
ature in S1.® Aside from the major resonance (Fig. 1),
there is no apparent additional structure in the conduc-
tance greater than the | mV (ie, 12 K) experimental
resolution for either S1 or S2, at a sample temperature of
4.2 K (immersed).

We now experimentally increase the superiattice mini-
band from 25 to 105 meV and examine the vertical trans-
por!. Figure 2 shows the low-voltage /-¥ snd G-V charsc-
teristics of S3 at 42 K. The * ~120 mV major peak
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FIG. 2. Low-voltage -V (solid) and G-V (dashed) characteristics of
sample S3 (105-meV-wide superlattice miniband) at 4.2 K. The + ~ 120
mV major resonances corresponds to the alignment line-up of the first
minigap with the emitter.

corresponds to the line-up of the first minigap with the
emitter. A series of peaks on the low bias side of the major
peak is apparent. Note that these biases correspond to elec-
tric fields well below that expected for Stark
localization.>'® The condition for Stark localization of a
superlattice 1s eEd > W, where E is the applied electric
field, 4 is the superlattice period, and W the width of the
miniband under consideration. At the biases considered
here, the Stark splitting is < 10 meV, compared to a mini-
band width of 105 meV. The “subresonant series’ starts to
degrade above 20 K, and is unobservable (except for the
highest subresonance peak) above 50 K.

Figure 3 shows the /-V and G-V characteristics of a
superlattice miniband experimentally increased to 190
meV (S4), keeping the number of superlattice periods con-
stant. The subresonance series is very pronounced; higher
bias peaks are evident even at room temperature. Assum-
ing that the structure is due to the finite extent of the
superlattice, we calculate the single electron transmission
coefficient of the ten-period superlattice/coupled quantum
well system, and map these ten resonant peaks onto the
self-consistent band structure. Figure 4 shows the calcu-
lated resonant crossings of the collector finite superlattice
transmission peaks with the emitter Fermi level, compared
with the experimental resonant peaks. The calibration of
the top resonance is determined by the number of periods
in the finite superlattice, and the low peak cutoff is deter-
mined from the superlattice Fermi level. The agreement
between calculated and experimental peak position is qual-
itatively (a ¥'/? behavior) and quantitatively good. Like-
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F1G. 3 Low-volage /-V (dashed) and G-V (solid) characteristics of
sample 34 (190-meV-wide superiattice meniband) at 10 K.
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FIG. 4. Experimental (square) and theoretical (circle) resonant cross-
ings of the collector finite superlattice transmission peaks with the emitter
superlattice Fermi level. The calculated resonant crossings were deter-
mined from mapping the finite superlattice transmission peaks onto the
self-consistent band structure and determining the bias at which they
cross the emitter Fermi level.

wise, S3 shows similarly good agreement.® High-voltage
deviation may indicate a zero-current model is no longer
valid.

The absence of structure in Sl and S2 implies that we
have experimentally observed the transition (in this sys-
tem) from an indistinguishable miniband to a coupled-weli
structure. In energy, this implies the transition occurs be-
tween state splittings of 4 meV (the maximum in S1) and
8 meV (the minimum observable in S3), when kT < the
state splitting E(i + 1) — E(/). Note that this is a function
of the position of eigenstate / within the miniband. In ra-
tionalized units, this corresponds to 2.5 meV < W(mini-
band width)/n( # periods) < 10.5 meV. The origin of the
eigenstate broadening mechanism (such as epitaxial or al-
loy fluctuations) is not known.

To check that the resonances are indeed arising from
the collector density of states, a sample (S5) identical to S4
but with bulk GaAs on one side of the superlattice was
investigated. Figure 5 shows the G-¥ characteristics of this
structure at 10 K. Positive bias corresponds to electron
injection from the bulk GaAs into the finite superlattice.
Under this condition, the position and number of the sub-
resonance peaks compares well with that of the finite su-
perlattice injector sample. As has been pointed out
earlier,'' there is no structure in the reverse bias direction
since the collector is bulk. It should be noted that the lower
Fermi level in the bulk GaAs (versus the replaced super-
lattice) accounts for the voltage shift of the subresonant
peaks.

In summary, we have observed by vertical tunneling
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FIG. 5. G-V characteristics of sample S5 (S4 with one superlattice re-
placed with bulk GaAs). T = 10 K. Positive bias corresponds to electron
injection from the bulk GaAs into the finite superlattice.

transport the eigenstates of a finite superlattice system far
below the Stark localization threshold.
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